
More about basic matrix operations for L X and L X D, etc. 
& Illustrations of eigen & svd operations for small real data set (Exercise below, p. 3) 
 
We can begin w/ an arbitrary data matrix X of order n x p. We shall illustrate in class for a small 
matrix; but also see the later pages of this handout.  Recall, L = I – (1/n) 11’ 
# If we choose the entries in a diagonal matrix D (Dn below) to be reciprocals of diagonal 
entries of the product X'LX, we first get Dn (as a row vector): 
>Dn=diag(t(X) %*% L %*% X) 
 Then redefine Dn to get: 
>Dn=diag(1/sqrt(Dn))  #So in effect we have  diag(diag(X’L X))  
  
 Dn becomes a diagonal (above) that contains reciprocals of the 
diagonals of the product X' L X. 
Now compute Z as: 
>Z = L %*% Xa %*% Dn      
   
#Try function  scale( )  in R to get Z (almost)  Try it...(you will need to multiply by a constant) 
# We shall examine these column VECTORS of Z geometrically in due course; but now we 
simply note that Z here has entries such that column sums of squares equal UNITY or one; 
further, the inner products of columns of Z are cosines of angles between unit length vectors, 
and these same cosines are also correlation coefficients for the various pairs of variables. The 
product of Z' times Z will have ones in its diagonal, viz., should be correlation matrix. 
Write as R = t(Z) %*% Z      
  
# where we now use two different arguments, X and Z: 
>cor(X); cor(Z)  #separating with semicolon gives both results 
   You should find these results are the same. 
  
>#Finally, we generate the inverse of this R (could do same for var(X) above, but will skip 
that here) using function solve. 
>R.inv = solve(R) 
  
R.inv is a matrix with diagonals exceeding unity (the universal lower bound of the inverse of 
the correlation matrix diagonals is 1). To get a useful summary statistic, compute R2

1.23 = 1 – 
1/1.126 (first entry). The statistic R21.23 is the squared multiple correlation, predicting 
variable 1 from optimal linear combination of 2 & 3.  See the figure on the next page. 
 
We can easily generalize this idea, getting each squared multiple correlation when predicting 
any column from all other columns: 
D.smc = diag(1 - diag(1/diag(R.inv))) [where R ‘knows’ that 1 means ‘as many 1’s as needed’ 
for this R.inv operation] 
 
For details about the geometry of regression, and then inverses, consider the vectors y, x1 and 
x2 on the next page just as if they were columns of the matrix I’ve computed as  
L X Dn above. I’ve concentrated on predicting y from x1 and x2, all vectors of unit (or equal) 
length. But then note that x1 could be predicted (using LS) from y and x2; also, x2 could be 
predicted from y and x1. Consideration of these last points leads to a sound geometric 
interpretation of INVERSES. I shall get to that in class. 

 



Geometry for least squares regression: Two predictors 
 
 
  In principle, any least squares (LS) regression entails the type of projection seen in 
this figure, notably so when there are just two predictors. 

 
 When the LS criterion is used to find regression coefficients this assures that the linear 
combination of the x’s, on x1-O-x2 plane, and called ŷ , is the perpendicular projection of y 
onto the space of the x’s.  Such a ŷ  is always in the space of the x’s, and the corresponding 
residual vector is always orthogonal to the space of the x’s. When x’s are mutually orthogonal 
then interpretations (and computations) become especially straightforward because the 
regression coefficients for the y-variable on any x-variable are the same as when all coefficients 
are computed in so-called ‘multiple regression.’  When x’s, i.e., the predictors, correspond to 
orthogonal (mutually uncorrelated) variables then interpretations are simplest of all, no matter 
how many x’s there may be (remember the use of orthogonal contrasts in ANOVA).    
 When x’s are mutually correlated, the projection picture does not change, nor do the 
facts in italics above; but computations (and interpretations) of regression coefficients do 
change, often radically. When x’s are correlated, then each regression coefficient is explicitly a 
multiple (partial) regression coefficient. These regression coefficients are closely related to the 
cosines of the dihedral angles between planes in the figure; details in class. Each such 
coefficient may even have a different sign than does the correlation of the corresponding x with 
y; and its magnitude, even for a ‘standardized’ regression coefficient, can range from zero to +/- 
infinity. (Standardized regression coefficients result when all variables, y and all x’s are 
scaled to have zero means and unit variances (or s.d.s); they can be helpful in some situations, 
and be sure in applications that you always consider the metric in use, either ‘raw’ score, or its 
standardized counterpart.)   
 Note that partial correlations can also be interpreted in the context of this figure. For 
example, the partial correlation between y and x1 is the cosine of the dihedral angle between 
the planes y-O-x1 and x1-O-x2. This is the partial correlation between y and x2; etc. 



(Remember, these matrices (above) can have any order (that can be stored in memory) for X of 
order n x p, except we generally will want n > p; that is the number of rows should exceed the 
number of columns. Recall that this is a necessary but not sufficient condition for the regular 
inverse of either the variance-covariance matrix or the correlation matrix to exist.) 
 
 Exercise: Do all operations I do below on your machine using your own small matrix X (with 
real data)[see below], ensuring that you understand what you’ve done. Ask questions. Then 
calculate the inverse of your matrix R, and continue, using a relatively small data set (possibly 
a sample [subset] w/ only few rows   [but with n > p]), to conduct an eigen analysis and 
singular value decomposition. You may use eigen directly on the matrix R, and svd  for the 
matrix Z  for your X. Be sure to include graphics (say using pairs and more) and 
interpretations of all results. Use my interpretations above to guide you, but be sure to take 
account of details in your explanations! Two possible data sets to consider are from are in the 
MASS library: painters and UScereal. (painters has fewer columns, but it would be fine to 
select a few columns from the cereal data.) The ‘School’ variable in the painters data is 
categorical, however, so it would have to be eliminated, or modified.  For the UScereal data, 
the first and last variables are categorical. Note that you might also consider a thorough 
principal component analysis following your reading (web) on this. 
 
     See my summary function at end; also, some algebra. (trees is in MASS library) 
Consider the trees data (see ?trees); but for our purposes choose only five rows: 
> trees[c(27,5,29,12,15),]  #selected rows; e.g. 5th row of trees is second row here 
   Girth Height Volume      
27  17.5     82   55.7   #it would be good for you to plot using pairs 
5   10.7     81   18.8    Let us call this matrix treess below. 
29  18.0     80   51.5 
12  11.4     76   21.0 
15  12.0     75   19.1 
>my.summary(trees[c(27,5,29,12,15),]) 
       Girth Height Volume 
means  13.92  78.80  33.22 
s.d.s   3.53   3.11  18.68 
skewns  0.26  -0.21   0.30 
krtsis -2.22  -2.15  -2.23  low and high values omitted... 
 
The Z for this X is: 
Z.trees=scale(trees[c(27,5,29,12,15),])/2 # Be sure you see why 
> Z.trees                                  I divided by 2 here 
    Girth Height Volume 
27  0.507  0.514  0.602    #sums of squares of columns are one 
5  -0.456  0.353 -0.386    which means lengths of col. vectors = 1 
29  0.578  0.193  0.489 
12 -0.357 -0.450 -0.327 
15 -0.272 -0.610 -0.378 
>t(Z.trees) %*% Z.trees  #which as you see gives the correlations R 
       Girth Height Volume 
Girth  1.000  0.537  0.983 
Height 0.537  1.000  0.645 
Volume 0.983  0.645  1.000 
 
Next, we generate eigenvalues and vectors for this R (and svd of Z) 
>sapply(eigen(cor(treess)),rnd3)  I might write R = V Dλ

2 V’ 
$values           # Note: rnd3 = function(x)round(x,3) 
[1] 2.462  .530  .008  # eigenvalues of matrix R (Dλ

2-vector) 



  The sum of these 3 values = 3 (see my notes on matrix algebra) 
$vectors   #eigenvectors of same matrix R 
       [,1]   [,2]   [,3]  #col SSqs all equal 1.00 
[1,]  -.603   .440   .666   also columns are mutually orthogonal 
[2,]  -.497  -.860   .119   so V’V = I (also, VV’=I) 
[3,]  -.624   .259  -.737 
    NB: rnd3 = function(x)round(x,3) 
sapply(svd(Z.trees),rnd3) 
$d 
[1] 1.569  .728  .089   #square these to get Dλ

2 values! 
$u 
       [,1]   [,2]   [,3] 
[1,]  -.597   .086   .506 
[2,]   .217   .830  -.253 
[3,]  -.478  -.296  -.533 
[4,]   .410  -.199   .561 
[5,]   .448  -.421  -.285  This matrix U is like V: U’U=I 
  (These three derived variables are called principal components) 
 First column contains MOST of the information … we shall discuss 
$v 
       [,1]   [,2]   [,3]  #COMPARE cols w/ those for R above! 
[1,]  -.603  -.440  -.666   (signs are reversed for one column) 
[2,]  -.497   .860  -.118   such reversals always a possibility) 
[3,]  -.624  -.259   .737 
  
 Also, you can find good discussions of principal component analysis (PCA) on the web or in 
books on multivariate analysis. If you find what you think is a good one, put the reference on 
our wiki! 
 
>?painters         Description: 
     The subjective assessment, on a 0 to 20 integer scale, of 54 classical painters.  The painters were 
assessed on four characteristics: composition, drawing, colour and expression.  The data is due to the 
Eighteenth century art critic, de Piles.  [More information at ?painters ] More on these data next week. 
 
painters[1:7,]   [[rank 2 works reasonably well...]] 
              Composition Drawing Colour Expression School 
Da Udine               10       8     16          3      A 
Da Vinci               15      16      4         14      A 
Del Piombo              8      13     16          7      A 
Del Sarto              12      16      9          8      A 
Fr. Penni               0      15      8          0      A 
Guilio Romano          15      16      4         14      A 
Michelangelo            8      17      4          8      A 
 
Note that a sample of say six rows could be obtained as: 
 
Paint.subs = painters[sample(1:54,6,repl=F),-5] #-5 says skip School 
    You should be able to give the dimensions (dim( )) of Paint.subs, etc. 
 
  ----------- Copy the functions below for next week: 
 
 
my.summary = function(xxx,dig=2)  #can change decimal accuracy w/ dig 
{#generate means/s.d.s/skewness's & kurtosis for each column of xxx 
xxx <- as.matrix(xxx) 
xm <- apply(xxx, 2, mean) 



s.d <- sqrt(apply(xxx, 2, var)) 
xs <- scale(xxx) 
sk <- apply(xs^3, 2, mean) 
kr <- apply(xs^4, 2, mean) - 3 
rg <- apply(xxx, 2, range) 
sumry <- round(rbind(xm, s.d, sk, kr, rg), 3) 
dimnames(sumry)[1] <- list(c("means", "s.d.s", "skewns", "krtsis", "low", 
"high")) 
sumry <- round(sumry, dig) 
sumry  } 
 
#- -----------and looking ahead, I give you a function ifa for common   
  #                factor analysis; for next week, if only briefly!   
ifa = function(rr,mm,scrp=T)  {  
# routine is based on image factor analysis; for exploratory factor analysis; 
#generates an unrotated common factor coefficients matrix & scree plot. 
# In R (v.2.0.1), follow w/, say, promax(  ) or varimax( ) where 
# parentheses contains result$fac if 'ifa' produced object 'result' 
# In Splus (v.6.2) follow w/ rotate; e.g. rotate( ), same as above, but  
# second argument in rotate could be 'varimax' or 'promax' or, ‘oblimin'  
# rr is taken to be symmetric matrix of correlations or covariances;  
# mm is no. of factors.  
# NB: this is routine that appears in my recent (2005, spring) article  
# Factor analysis: Exploratory; Wiley Encyclopedia of Behavioral  
 # Statistics For additional functions or assistance, contact: 
#  rpruzek@uamail.albany.edu  
#rr<-matrix(rr) 
rinv <- solve(rr) #takes inverse of rr; so rr must be non-singular 
sm2i <- diag(rinv) 
smrt <- sqrt(sm2i)# smrt a vector here 
dsmrt <- diag(smrt) 
rsr <- dsmrt %*% rr %*% dsmrt 
reig <- eigen(rsr, sym = T) 
vlamd <- reig$va 
vlamdm <- vlamd[1:mm] 
qqm <- as.matrix(reig$ve[, 1:mm]) 
theta <- mean(vlamd[(mm + 1):nrow(qqm)]) 
dg <- sqrt(vlamdm - theta) 
if(mm == 1)fac <- dg[1] * diag(1/smrt) %*% qqm 
else fac <- diag(1/smrt) %*% qqm %*% diag(dg) 
if(scrp){plot(1:nrow(rr), vlamd, type = "o", ylab='Eigenvalues of DRD') 
abline(h = theta, lty = 3) 
title("Scree plot for IFA")} 
fac<-round(fac,2) #sets two decimal digits in output 
rownames(fac)<-list(rownames(rr)[1:nrow(rr)])[[1]] 
list(vlamd = vlamd, theta = theta, fac = fac)  } 


