SOME NOTES re: Matrix principles and operations: (most can be illustrated in R; do it!)

1. An outer product of a vector ($\mathrm{w} / \mathrm{itself}$) is of the form 'column vector x row vector'; in general it is a (square) matrix, but its RANK is always one (see function outer ()).
2. An inner product of, say, a MATRIX w/ itself is of the form 'row matrix x column matrix'; this product is symmetric. (The syntax for multiplication is of the form $t(A) \% * \% A$ in R.)
3. Rank of a matrix usually refers to the number of non-zero eigenvalues (or singular values) of the matrix. (Note that in practical data analysis 'zero' is usually defined wrt some small 'tol' [tolerance] threshold; e.g. tol = sqrt(.Machine\$double.eps) [see ?solve.])
4. For a square symmetric matrix A, it's eigen-decomposition is written $\mathbf{Q} \mathbf{D}^{2}{ }^{2} \mathbf{Q}$ '; if A is not symmetric, then the left and right eigenvectors are not the same, so write $\mathbf{A}=\mathbf{U} \mathbf{D}_{\boldsymbol{x}}{ }^{2} \mathbf{V}^{\prime}$, say; if A is rectangular, not square, then standard notation leads to $\mathbf{A}=\mathbf{P} \mathbf{D} \mathbf{Q}^{\prime}$. See eigen and svd functions in R.
5. Real data matrices, and their cross products, $\mathbf{X}^{\prime} \mathbf{X}$, or $\mathbf{X X}$, cannot have negative singular values or eigenvalues; note, however, that if the number of rows, say, exceeds the number of columns of \mathbf{X}, then XX' must have at least one zero eigenvalue. ($\% * \%$ is multiplication operator)
6. The RANK of a square (possibly symmetric) matrix cannot exceed the smallest dimension of any matrix used to compute it (in a product): Think of this w/ product like ABCE=G.
7. When a matrix is computed as the product of several matrices (see 5.) the rank of the product cannot exceed the rank of the lowest rank matrix in that product. Note that matrix multiplication is generally not commutative, but it is distributive and associative.
8. Matrices cannot be inverted (regular inverse) unless they are square and of full rank. I.e., rank must equal order of the square matrix for it to be invertible. (use solve() for inversion)
9. Generalized inverses can be computed for (square and rectangular) matrices that are not of of full rank. There are an infinite number of generalized inverses for any singular matrix.
10. There is one particular generalized inverse (however) that is unique; it is called a MoorePenrose inverse. It is easily computed using a singular value or eigen decomposition. For a square, symmetric matrix this inverse can be computed as $\mathbf{Q} \mathbf{D}_{\lambda}^{-2} \mathbf{Q}^{\prime}$, with the understanding that only eigenvalues $\mathrm{w} /$ magnitudes larger than 'tol' [operational value of zero] are used in the diagonal matrix $\mathbf{D}_{n}{ }^{2}$, and only the corresponding columns of \mathbf{Q} need to be used, those that correspond to the 'smallest' eigenvalues.
11. An ill-conditioned matrix is one whose columns (and rows, if square) can are 'nearly' interdependent, i.e., there is at least one eigenvalue that is 'near' to zero, but not quite. The term 'ill conditioned' is context dependent; that is, the term is defined in the context of the precision of the machine/algorithm used in its computation. 'Ill conditioned' in one context (like hand computation) may not be the same as 'ill-conditioned' in the context of a modern computer \& refined algorithm.
12. Finally, by definition a matrix must be complete; i.e. cannot have missing values. This means that it is something of an 'oxymoron' to say that "matrix X has missing values".
