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Outline

• PART I –Introduction

1. Missing-data problem

2. Terminology

– Types of missingness

– Missingness mechanism

– Examples

3. Older methods

4. Maximum likelihood a

5. Multiple imputation

awill be covered very briefly
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• PART II –Tools

1. Methods for continuous incomplete data

– NORM,PROC MI and IveWare

2. Methods for categorical incomplete data

– CAT and IveWare

3. Methods for mixed incomplete data

– Mix and IveWare

4. Methods for multilevel incomplete data

– Pan, MLWIN
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1. The missing-data problem

The problem

Most statistical analysis and estimation procedures were not designed

to handle missing values

• Even small amounts of missing data cause great difficulty

• The missing-data aspect is a nuisance, not of primary interest

• Principled statistical solutions are computationally messy

• Ad hoc or unprincipled missing-data methods may do more harm

than good (inefficiency, misleading uncertainty measures)
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The goal

To make statistically valid inferences about population parameters from

an incomplete dataset

• Not to estimate, predict, or recover missing values themselves

• Good to understand reasons for/ causes for missingness

• Good to avoid modeling the missing-data mechanism if possible

• Untestable assumptions are inevitable

• Sensitivity analyses are now standard part of any missing data

procedure
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History

Missing-data theory and practice

• 1970’s - ad-hoc procedures: case deletion, single imputation

• 1980’s - likelihood-based methods based on EM algorithm (Demp-

ster, Laird and Rubin, 1977)

• 1990’s - multiple imputation; Bayes procedures using MCMC

(Rubin, 1987)

• 2000 + MI in complex problems (survey, genetic association

studies), software development, diagnostics

c.1980 an important shift took place. Before that, missing data were

seen as something to be gotten rid of. After that, missing data were

seen as s source of uncertainty to be averaged over.
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Key references

Technical:

• Dempster, Laird and Rubin (1977) article on EM algorithm

• Little and Rubin (1987, 2002) book on missing data: review of ad

hoc methods, description of EM and likelihood-based methods

• Rubin (1987) book on multiple imputation

• Schafer (1997) book on MCMC and multiple imputation for

missing-data problems

• Molenberghs and Kenward (2007) book on missing data in clinical

studies
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Key references (ctd.)

More subject-oriented

• Carpenter, J., Pocock, S. and Lamm, C. J. (2002) with special focus

on missing data in clinical trials

• Ranhunathan (2004); Schafer and Graham (2002) : excellent

summary on fundamentals of missing data

• Allison (2000, 2001)

• Genetic studies: Foulkes, Yucel and Li (2008); Fridley et al. (2009)

(BMC); Servin and Stevens (2007) (PLoS Genetics)

• More comprehensive list and other resources are available at

www.missingdata.org.uk

maintained by James Carpenter
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2. Terminology

What is a missing value?

Consider whether there is a well-defined “true” value underlying the

missing-value code. For example:

• In a survey, a subject refuses to answer the income question

• In a prevention study, subject skips all substance-use (measurement

error or unwillingness?)

• In a clinical trial, a patient drops out of a study b/c treatment

doesn’t work

• In genetic association studies, genotype data might be regarded

missing

Considering a nonresponse to be a qualitatively different category ??? (Little and Rubin, 2002)
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2. Terminology

Types of nonresponse

• Unit nonresponse: No data could be collected from the sampled

unit (e.g. not at home, refused to participate, etc.). Traditionally

handled by reweighting.

• Item nonresponse: Partial data collected for the unit, but some

items missing (e.g. skipped the income question, unobservable

genotype). Traditionally handled by imputation or weighting in

simple settings.

In complicated datasets (e.g. panel studies), there are some intermediate

situations:

• “Wave” nonresponse: subject is missing for one or more waves

• Attrition or dropout Subject leaves study and does not return
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Patterns of missingness

1. Univariate problems: Only one variable subject to nonresponse

variables

Units X_1 X_2 . . . X_p Y

1 O O . . . O O

2 O O . . . O O

. O O . . . O O

. O O . . . O O

. .....................

. O O . . . O ?

. O O . . . O ?

. O O . . . O ?

n O O . . . O ?
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Patterns of missingness

2. Monotone patterns: If Yj is missing, then Yj+1, . . . , Yp are missing

as well

variables

Units Y_1 Y_2 Y_3 . . . Y_p

1 O O O . . . O

2 O O O . . . O

. O O O . . . O

. O O O . . . ?

. ...................

. O O O ? ? . ?

. O O ? ? ? . ?

. O ? ? ? ? . ?

n O ? ? ? ? . ?
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Patterns of missingness

3. Arbitrary patterns: Any set of variables may be missing for any

unit

variables

Units Y_1 Y_2 Y_3 . . . Y_p

1 O ? O . . . O

2 ? ? O . . . ?

. O O ? . . . O

. ? O O . . . ?

. ...................

. ? O O . . . ?

. ? O ? . . . O

. O O ? . . . ?

n O ? O . . . ?
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Missingness mechanisms

View response as a random process (Rubin, 1977). Not because we

want to model it, but because we want to clarify the conditions under

which we DO NOT have to model it!!!

Y = complete data

= (Yobs , Ymis)

R = indicators of response

X = will always denote the completely-observed auxiliary data
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Missingness mechanisms: MCAR

1. Missing completely at random (MCAR)- Probabilities of

missingness unrelated to data

P (R | Y ) = P (R)

• nonrespondents are like a random subsample

• rarely satisfied in practice

• may be refuted by examining Yobs and R
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MCAR Example

• After fielding and getting responses of a survey, a questionnaire of

a study subject is lost

• The reason for missingness is completely random

• In other words, the probability that an observation is missing is not

related to any of the study subject’s characteristics

• Simple comparisons on characteristics observed and missing subjects

provide a test for MCAR
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Example: Missing genotype (Foulkes, Yucel and Li (2008)

• In population-based genetic association studies of unrelated indi-

viduals, genotype data can be useful in characterizing genotype-

phenotype associations, or even gene-environment interactions

• Problem is that haplotypic phase (the alignment of alleles on a

single chromosome) is unobservable

• This information can inform about the possible groupings of

individual, giving rise to well-known estimation routines on clustered

data

• Is this MCAR?? Perhaps...
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Missingness mechanisms: MAR

2. Missing at random (MAR)- Probabilities of missingness may be

related to Yobs but not Ymis

P (R | Y ) = P (R | Yobs)

• an unfortunate name: doesn’t mean randomly missing!!!!!!

• also called “ignorable nonresponse”

• cannot be refuted by examining Yobs and R

• becomes more plausible as Yobs is enriched

• under MAR, one does not need to model R

• good “default” assumption
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MAR Example

• Suppose you field a survey and among many items asked, there are

items pertaining to education and income

• Those who have between 5 and 15 years of education have complete

income values

• Income is missing for a random sample of those who have less than

5 years and more than 15 years of education

• Conditional on education (which is observed), missing data on

income are random
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Missingness mechanisms: MNAR

3. Missing not at random (MNAR)- Probabilities of missingness

may be related to Ymis

• I ALWAYS HOPE THIS IS NEVER THE CASE!

• also called “nonignorable nonresponse”

• more difficult to handle than MAR

• requires explicit joint modeling of Y and R

• other un-verifiable assumptions need to be made

• methods will tend to be problem-specific
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MNAR Example

• Suppose you have access to data at IRS (!!!)

• Examining the income for all those who have missing income

indicate that they are not responding to income question because

they have either high or low income

• Not obvious what to do because as the missingness probability

depends on the unobserved characteristic

• If one can enrich the other collected data (e.g. geographical location,

education, etc.) then MAR can be enforced

• In clinical studies, this may not be possible
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Missingness mechanism: Notes

• In multivariate settings with arbitrary patterns of missingness, we

often assume MAR as it is very difficult to posit any probability

structure on missingness

• If missingness is less arbitrary (e.g. drop-out in longitudinal

designs or planned monotone missingness), then we can get more

adventurous

• If we are willing to impose a model on missingness, we should have

a very strong reasoning and believe our model is correct

• MAR is often reasonable, especially in surveys
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Example of the workshop: SBP Data

• To illustrate simple methods, we will work with an artificial data

by Schafer and Graham (2002)

• Suppose that systolic blood pressure (SBP) of N = 30 subjects are

recorded in January (X)

• Some have a second reading in February (Y ) but others do not.

• Our data are simulated from a bivariate normal with means

µx = µy = 125, standard deviations σx = σy = 25 and

correlation ρ = .60
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SBP Data

X Y X Y

110 86 126 137

141 157 67 78

116 153 123 149

88 137 98 128

109 116 100 110

131 98 91 115

98 117 123 130

135 158 112 133

101 126 91 119

100 112 173 185

108 148 108 121

103 128 124 147

108 111 99 86

156 119 93 111

143 130 91 117
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SBP: Imposing missing values under MCAR

• Randomly select 7 measurements taken in February (Y ):

X Y X Y

110 86 126 137

141 NA 67 78

116 153 123 NA

88 NA 98 NA

109 NA 100 NA

131 NA 91 NA

98 NA 123 NA

135 NA 112 NA

101 NA 91 NA

100 NA 173 NA

108 148 108 121

103 NA 124 NA

108 NA 99 NA

156 NA 93 NA

143 NA 91 117
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SBP: Imposing missing values under MAR

• Those who have a higher than 130 (X > 130) (near-hypertension

condition) reading in Jan. returned February for a second reading
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X Y X Y

110 NA 126 NA

141 157 67 NA

116 NA 123 NA

88 NA 98 NA

109 NA 100 NA

131 98 91 NA

98 NA 123 NA

135 135 112 NA

101 NA 91 NA

100 NA 173 185

108 148 108 NA

103 NA 124 NA

108 NA 99 NA

156 119 93 NA

143 107 91 NA
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SBP: Imposing missing values under MNAR

• Those recorded in February were those whose February measurements

exceeded 130 (Y > 130) (Nurse may have decided to record only those

who are in the hypertensive range)
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X Y X Y

110 NA 126 137

141 157 67 NA

116 153 123 149

88 137 98 NA

109 NA 100 NA

131 NA 91 NA

98 NA 123 130

135 158 112 133

101 126 91 NA

100 NA 173 185

108 148 108 NA

103 NA 124 147

108 NA 99 NA

156 NA 93 NA

143 NA 91 NA
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R Code (SAS is MAR!)

# Below mvrnorm is the function simulating from a multivariate normal, but before set the random

# number generator seed so that we all have the same data

set.seed(1234)

library(MASS)

sbp= round(mvrnorm(n=30,mu=c(125,125), Sigma=matrix(c(25^2,375,375,25^2),2,2)))

sbp

> sbp

[,1] [,2]

[1,] 110 86

[2,] 126 137

[3,] 141 157

[4,] 67 78

omitted

# impose missing values on sbp [,2] (in our case it will be Y) under MCAR

miss=sample(1:30,size=30-7)

sbp.mcar=sbp

sbp.mcar[,2][miss]=NA

# now create MAR mechanism

# Those who had a first SBP reading greater than 140 returned to give second reading

sbp.mar=sbp

sbp.mar[,2][sbp[,1]<130]=NA

# now create MNAR machanism

sbp.mnar=sbp

sbp.mnar[,2][sbp[,2]<130]=NA
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Some comments on missingness mechanism

• Increasing sample mean and decreasing SD from MCAR to MAR
to MNAR: Not a feature of MCAR, MNAR or MAR but commonly
seen in practice (although our sample does not show this)

Table 1: Mean (SD)

X Y Y(MCAR) Y(MAR) Y(MNAR)

112.20 124.63 120 137.33 148.55

(22.23) (23.46) (29.13) (24.32) (15.37)

• In multivariate applications, not easy to figure these mechanisms!

• We often use MAR because mathematically convenient

• If possible, sensitivity tests are useful
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3. Older methods

Simple case deletion

Omit incomplete cases from analysis, treating the remainder as the

actual sample

• used by default in many statistical packages

• there could be various ways to do this in any given situation

– when estimating a covariance matrix

– listwise or pairwise deletion

– complete cases or available cases

32



Missing Data Methods'

&

$

%

Case deletion –Pro

• in a few special cases, case deletion is the statistically “correct”

(optimal) method

• does yield correct (though not efficient) inferences under MCAR

• can be the most practical solution when the portion of data

discarded is “small” and relatively uninfluential

• nonparametric; makes no assumptions about the distribution of the

data
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Case deletion –Con

• nearly always inefficient

• can introduce biases if missingness is not MCAR

• often unclear which set of cases should be used for a particular

analysis

• may discard unacceptably large portions of cases, especially in

multivariate problems
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Reweighting methods

More sophisticated form of case deletion; helps to reduce bias when

missingness is not MCAR

• Idea: Discard incomplete cases and reweight the complete ones

so that they more closely resemble the population with respect to

distribution of important (e.g. demographic) characteristics

• Often used to handle unit nonresponse in large surveys; nonresponse

adjustments can be built into the survey weights

wi =
1

P (unit i selected)
× 1

P (unit i responds | selected)

The first factor is determined by the sample design, the second

factor must be estimated
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Reweighting methods : Notes

• Weighting does not require a model for the data, but it may not be

efficient

• Reviewed by Little and Rubin (1987) Ch. 4

• only works under MCAR

• examination of the variables for respondents and nonrespondents

often reveals whether or MCAR holds
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Single imputation

Fill in missing data with plausible values

• used by survey statisticians for 50+ years

• more efficient than case deletion, particularly for item nonresponse

• requires care to avoid data distortion

• adds fake information to dataset (single imputation), distorting

uncertainty measures

• multiple imputation fixes the uncertainty problem

• See Little and Rubin (1987) for more discussion
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Methods for single imputation

A. Mean substitution

Replace each missing value by mean of observed values

• preserves means

• distorts other aspects of the distribution (variance, quantiles,...)

• doubly disastrous effect on confidence intervals for mean (S2 too

small, n too large)

• distorts relationships among variables

• not recommended
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Methods for single imputation (ctd.)

B. Hot deck imputation

Replace each missing value by a randomly drawn observed value

• similar to bootstrap

• preserves marginal distributions

• distorts relationships among variables

• covariate information can be included

• easiest to implement for problems of univariate missingness

• may produce strange results for certain types of problems (e.g.

estimation of variances, quantiles)
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Methods for single imputation (ctd.)

C. Regression methods

Replace each missing value by a predicted value from a regression model

estimated from the observed data

Suppose we observe X and Y, X is completely observed and Y is only

observed for nobs cases.

• regress Y on X for cases 1, . . . , nobs

• impute ŷi = β̂0 + β̂1xi for i = nobs + 1, . . . , n

• this WILL inflate correlations

• Last observation carried forward : even worse as it ignores

regression to the mean
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Methods for single imputation (ctd.)

C. Regression methods (CTD.)

Better idea: Replace each missing value by a predicted value plus a

random residual

• impute yi = β̂xi +N(0, S2), where S2 =MSE

• requires a model

• assumes MAR

• becomes more difficult for multivariate missingness
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Illustrating single imputation on SBP data

• Impute missing blood pressure readings of Y , under MAR mecha-

nism

• Four methods

– Mean substitution

– Simple hot deck

– Conditional mean imputation based on linear regression of Y on

X

– Drawing from the estimated predictive distribution of Y given

X

42



Missing Data Methods'

&

$

%

Implementing via R

# mean imputation

sbp.mar[,2][sbp[,1]<140]=mean(sbp.mar[,2],na.rm=T)

plot(sbp.mar[,1],sbp.mar[,2],xlab="X = January reading",

ylab="Y = Februrary reading", main="mean imputation")

#simple hot deck imputation

## first re-create sbp.mar

sbp.mar=sbp

sbp.mar[,2][sbp[,1]<140]=NA

# observed values:

sbp.mar[,2][!is.na(sbp.mar[,2])]

# now sample of size=1 and replace teh NAs:

for(i in 1:30){sbp.mar[i,2][sbp[i,1]<140]=

sample(sbp.mar[,2][!is.na(sbp.mar[,2])],size=1)}

# now look at the plot:

plot(sbp.mar[,1],sbp.mar[,2],xlab="X = January reading",

ylab="Y = Februrary reading", main="simple hot deck")
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# Conditional mean

# first fit a regression model, and predict values of missing Y for the observed X values

reg=lm(sbp.mar[,2]~sbp.mar[,1])

for(i in 1:30){sbp.mar[i,2][sbp[i,1]<140]=reg$coef[1]+reg$coef[2]*sbp.mar[i,1]}

plot(sbp.mar[,1],sbp.mar[,2],xlab="X = January reading",

ylab="Y = Februrary reading", main="conditional mean imputation")

# imputing from predictive distribution (in our case this would be just adding

# a normal variate with

# variance equal to the residual variance

sbp.mar=sbp

sbp.mar[,2][sbp[,1]<140]=NA

for(i in 1:30){sbp.mar[i,2][sbp[i,1]<140]=reg$coef[1]+reg$coef[2]*sbp.mar[i,1]+rnorm(n=1,mean=0,sd=34.74)}

plot(sbp.mar[,1],sbp.mar[,2],xlab="X = January reading",

ylab="Y = Februrary reading", main="Predictive distribution imputation")
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Relationship after mean imputation
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Relationship hot deck imputation
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Relationship after conditional mean imputation
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Relationship after imputing from a predictive distribution
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Problem with single imputation

Fundamental Issue

Whenever missing data are replaced by one set of imputed values, later

analyses will not reflect missing-data uncertainty

• sample size is overstated

• confidence intervals too narrow

• Type 1 error rated too high

The problem becomes worse as the rates of missing information

and the number of parameters increase
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Problem with single imputation (ctd.)

Example: Scalar Inference

• 30% missingness

• confidence intervals for a scalar quantity (regression coefficient,

odds ratio, relative risk, etc.)

Nominal coverage 90% 95% 99%

Actual coverage 77% 85% 94%

• In extreme cases such as our running example, performance become

dramatically bad, in fact coverage seen as 0% when the misisngness

mechanism is MNAR

• See Graham and Schafer (2002) for detailed discussion
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Problem with single imputation (ctd.)

Example: Multiparameter Inference

• 30% missingness

• significance levels for testing a ten component null hypothesis (e.g.

regression F-test)

Nominal α 10% 5% 1%

Actual α 57% 45% 25%
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4. Maximum Likelihood

Estimate parameters of interest directly from the observed data,

maximizing

f(Y ; θ) = distribution of complete data

L(θ;Yobs) =

∫

f(Y ; θ)dYmis

• assumes MAR; response mechanism is not modeled

• fully parametric

• approximately unbiased in large samples and is highly efficient

• Confidence intervals or regions are often computed using well known

result

θ̂ ∼ N(θ, [−l′′(θ̂)]−1)
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Maximum Likelihood (ctd.)

• requires special algorithms such as EM

• PROBLEM-SPECIFIC

• standard errors may be difficult to get (observed information

matrix, not expected)
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Maximum Likelihood (ctd.)

Examples A few software products are available for calculating ML

• NORM, CAT, MIX, PAN

• SAS PROC MI, counter-inutitive but it actually calculates ML

when number of imputations is specified as zero (examples will

follow)

• SAS PROC MIXED for unbalanced longitudinal data with missing

responses (does not handle missing covariates, for that refer to

PAN)

• AMOS, Mx, Mplus for linear models and structural equations with

incomplete data

Comments
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• these all assume MAR

• Missing data might not be properly accounted for if important

“causes” of missingness are not in the model
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Maximum likelihood: EM

Computing MLE in missing-data problems

• Often requires iterative computation

• A general method for MLE in missing data was described by

Dempster, Laird and Rubin (DLR) (1977) (“solve an intractable

incomplete-data problem by iteratively solving an easier complete-

data problem”)
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Likelihood-based methods: EM of DLR

Features of EM

• Very stable; guaranteed to increase l(θ;Y )

• Convergence rate is linear

• high rates of missing information can make it converge painfully

slow!

• SEs are not automatic byproduct of EM, unlike Fisher scoring

• wide variety of applications including non-missing data problems

such as random-effects models, latent class models, etc.
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General comments

• In principle, ML is the most efficient answer

• In nearly all cases, the ML estimation routines available today

assume MAR

• ML estimation with incomplete data is available to users in only a

fairly small group of models

• ML algorithms for incomplete data can be complicated

• ML estimation for a range of regression models with missing

covariates and nonignorable missing response by Ibrahim and

colleagues
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Example: Finding ML via SAS PROC MI

data sbpmar;

input x y @@;

datalines;

110 . 126 .

141 157 67 .

116 . 123 .

88 . 98 .

109 . 100 .

131 . 91 .

98 . 123 .

135 . 112 .

101 . 91 .

100 . 173 185

108 . 108 .

103 . 124 .

108 . 99 .

156 119 93 .

143 107 91 .

;

* now use PRC MI to find the ML in the presence of missing values

proc mi data=sbpmar seed=1234 simple nimpute=0;

em itprint outem=outem;

var x y;

run;

* This example is not all that interesting! But used as illustration!;
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EM of SAS PROC MI: Output

Model information

Model Information

Data Set WORK.SBPMAR

Method MCMC

Multiple Imputation Chain Single Chain

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 0

Number of Burn-in Iterations 200

Number of Iterations 100

Seed for random number generator 1234
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EM of SAS PROC MI: Output

Missing data patterns

Missing Data Patterns

---------Group Means--------

Group x y Freq Percent x y

1 X X 4 13.33 153.250000 142.000000

2 X . 26 86.67 105.884615 .
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EM of SAS PROC MI: Output

Univariate statistics and pairwise correlations

Univariate Statistics

---Missing Values--

Variable N Mean Std Dev Minimum Maximum Count Percent

x 30 112.20000 22.23914 67.00000 173.00000 0 0.00

y 4 142.00000 35.72114 107.00000 185.00000 26 86.67

Pairwise Correlations

x y

x 1.000000000 0.607944569

y 0.607944569 1.000000000
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EM of SAS PROC MI: Output

Initial Parameter Estimates for EM

_TYPE_ _NAME_ x y

MEAN 112.200000 142.000000

COV x 494.579310 0

COV y 0 1276.000000
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EM of SAS PROC MI: Output

MI Procedure, Iteration history and EM (MLE) estimates
The MI Procedure

EM (MLE) Iteration History

_Iteration_ -2 Log L y

0 246.717168 142.000000

1 246.588776 142.000000

2 246.529711 141.633274

.......

.......

196 244.756075 91.026681

197 244.755094 90.936872

198 244.754131 90.847915

199 244.753186 90.759803

200 244.752258 90.672527

EM (MLE) Parameter Estimates

_TYPE_ _NAME_ x y

MEAN 112.200000 90.672527

COV x 478.093333 605.342212

COV y 605.342212 1378.238156
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EM (Posterior Mode) Estimates

_TYPE_ _NAME_ x y

MEAN 112.200000 82.917007

COV x 434.630303 626.579673

COV y 626.579673 1248.142498
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5. Multiple imputation

A simulation-based approach to missing data

?

?

?

?

Imputations
1  2 m

...

...

...

...

...
Observed data

Multiple imputation
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Multiple imputation (ctd.)

• Retains much of the attractiveness of single imputation from a

conditional distribution but solves the problem of understating

uncertainty

• Replaces each missing value by a list of m simulated values values

• Each of the m data sets is analyzed in the same fashion by a

complete data method; the results are then combined following

Rubin’s rules

Rubin (1987) calls this the repeated-imputation inference method

67



Missing Data Methods'

&

$

%

Multiple imputation (ctd.)

• works with standard complete-data analysis methods

• One set of imputations may be used for many analyses

• can be highly efficient, even for small m

– The efficiency of an estimator based on m imputations is

(1 + γ/m)−1, where γ is the rate of missing information
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Efficiency of multiple imputation (%)

γ

m 0.1 0.3 0.5 0.7 0.9

3 97 91 86 81 77

5 98 94 91 88 85

10 99 97 95 93 92

20 100 99 98 97 96
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Multiple imputation: RULES for combining estimates

After obtaining m imputations of Ymis , analyze the m completed

datasets and combine the results

Rubin’s (1987) rules for scalar estimates

Q̂ = complete-data point estimate

Û = complete-data variance estimate

Q̄ = m(−1)
m
∑

t=1

Q̂(t)

B = (m− 1)−1
m
∑

t=1

(Q̂(t) − Q̄)2

= Between imputation variance
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Ū = m(−1)
m
∑

t=1

U (t)

= Within imputation variance

T = Ū + (1 +m−1)B

= Total variance

Interval estimate is Q̄± tν
√
T , where

ν = (m− 1)

[

1 +
Ū

(1 +m−1)B

]2
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Multiple imputation: RULES for combining estimates

• Degrees of freedom vary from m − 1 to ∞, depending on relative

sizes of Ū and (1 +m−1)B

• Relative increase in variance due to nonresponse is estimated by

r =
(1 +m−1)B

Ū

• Fraction of missing information is estimated by

r + 2/(ν + 3)

r + 1

Note’: this estimate can be noisy for small n
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Multiple imputation: RULES for combining estimates

Additional methods available for multidimensional estimands

• Combining point estimates and covariance matrices (Li, Raghu-

nathan, and Rubin, 1991)

• Combining p-values (Li et al., 1991)

• Combining likelihood-ratio test statistics (Meng and Rubin, 1992)

All methods reviewed in Schafer (1997, ch. 4)
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Multiple imputation

Proper multiple imputation

• The validity of MI rests upon how the imputations are created

and how that procedure relates to the model used to subsequently

analyze the data

• Creating MI’s often requires special algorithms (Schafer, 1997;

Schafer and Yucel, 2002)

• In general, they should be drawn from a distribution for the missing

data that reflects uncertainty about the parameters of the data

model; P (Ymis | Yobs , θ).

• Simulatem independent plausible values for the paramaters θ(1), θ(2), . . . , θ(m

then draw the missing data for each θ(i), i = 1, 2, . . . ,m
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Multiple imputation (ctd.)

• “Independence” is key to get to the multiply imputed datasets

• Assess whether the m versions are independent using time series

plots (PART II)

• Use each of the m data to fit the models and combine the results

(More on this in Part II)
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Multiple imputation: Imputation models

• The imputation model should include

– variables crucial to the analysis

– variables that are highly predictive of them

– variables that are highly predictive of the missingness

– variables that describe special features of the sample design

(probability surveys)

• Relationships that are the subject of future analyses should be

present

• May rely on extra information

• Approximate models are usually okay
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Creating MIs

Example 1

x1, x2, . . . , xn observed covariate

y1, y2, . . . , yn ∼ N(β0 + β1xi, σ
2)

y1, . . . , ya observed

ya+1, . . . , yn missing

X =

























1 x1

1 x2

. .

. .

. .

1 xn

























y =

























y1

y2

.

.

.

yn

























β̂ =

(

β̂0

β̂1

)
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Creating MIs : Example 1 ctd.

• Calculate β̂ = (XTX)−1XT y, ǫ̂ = y −Xβ̂

• Draw σ2 ∼ ǫ̂T ǫ̂/χ2
a−2

• Draw β ∼ N(β̂, σ2(XTX)−1)

• Draw yi ∼ N(β0 + β1xi, σ
2), i = a+ 1, . . . , n

• Repeat m times
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Creating MIs

Example 2

y1, y2, . . . , yn ∼ F

y1, . . . , ya observed

ya+1, . . . , yn missing

Question: Can we create proper multiple imputations nonparametrically?

• Draw n values from y1, . . . , ya with replacement

• Subsample n− a values from these with replacement

• Repeat m times

Called “approximate Bayesian bootstrap” (ABB) by Rubin (1987)

• extension of this used by SOLAS (Statistical Solutions, 1998)
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Creating MIs

More Generally We need to obtain independent draws Y
(1)
mis

, . . . , Y m
mis

P (Y mis | Y obs) =
∫

P (Y mis | Y obs, θ)P (θ | Y obs)dθ

where θ = parameters of the imputation model

• P (θ | Y obs) is often intractable

• special computational methods needed (Markov chain Monte Carlo,

MCMC)

• NORM uses a class of MCMC, Data Augmentation, to accomplish

this

• Augments the unknowns (missing data and parameters) from their

prospective distributions and iterate for a number of cycles
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• Must have large number of iterations to ensure that draws of

missing data are independent

– time series plots of θ

– autocorrelation functions for θ
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Creating MIs’:Practical Advice

• Be conservative; its better to overestimate the number of cycles

needed

• Before trying data augmentation, its a good idea to run EM

• Parameter estimates from EM are good starting values for DA

• Convergence behavior of DA is usually resembles that of EM

Rule-of-thumb: If EM converges by t cycles, DA will almost certainly

converge by t cycles as well

82



Missing Data Methods'

&

$

%

Notes on multiple imputation and EM

• Statistical model needed in both for complete data (normal, etc.)

• Assumptions on missingness mechanism is needed (MAR)

• Often MI is preferred as the “practitioners” could focus on analyses

of a more substantive importance using the “completed” data

• In some problems (e.g. clustered data) EM requires more complex

statistical algorithms

• Prior distribution for parameters for MI (default noninformative

priors are usually okay)
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Software for MI

Software for imputation under a multivariate normal model

• NORM (Schafer 1999):Free Windows program. Uses data aug-

mentation.

• Amelia (Gary King et al., 2001): Free program; also available as

macros for GAUSS. Uses importance resampling rather than DA.

• PROC MI (SAS version 8.2): New “experimental” SAS procedure

equivalent to NORM, also implements other methods for creating

multiple imputations

• S+ Missing Data (S-PLUS Version 6) and R library norm:

MI for Gaussian model; equivalent to NORM
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Software for MI(ctd.)

Software for imputation under other models

• CAT, MIX: Schafers old S-PLUS functions for categorical data,

mixed continuous and categorical data; now obsolete (part of SPlus

library(missing) and R libraries cat and mix)

• PAN Schafer and Yucel (2002): program for longitudinal data;

under development. Currently available as R library pan.

• SOLAS (Statistical Solutions, Inc.): Multiple imputation by

two methods

– Propensity-score method with approximate Bayesian bootstrap

(Lavori, Dawson and Shera, 1995). This can be dangerous!

(Allison, 2000)

85



Missing Data Methods'

&

$

%

– Model-based method using a sequence of regression models;

requires missingness pattern to be monotone.

• MICE and IveWare: S+ and R functions for approximate MI

using “chained regression equations”. IveWare is a set of fortran

routines and available as SAS macro. MICE is available from

http:\\www.multiple-imputation.com
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Part II
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1. Methods for continuous incomplete data

Y1 Y2 . .   . Yr

1

2

3

.

.

.

n

?

?

?
? ?

?

?

?

?

? : missing values (MAR)

n units are independent and

Identically distributed N(0,∑) 
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1. Methods for continuous incomplete data

• NORM (SAME AS PROC MI with MCMC option)

– Computational algorithm

– What to watch for

– Example and application using NORM

• SAS PROC MI

• IveWare
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Imputation model : The normal model

Y = matrix of complete data

= (y1, y2, . . . , yn)
T

Assume that

y1, y2, . . . , yn | θ ∼ Np(µ,Σ),

where θ = (µ,Σ) is unknown.

• Each variable is assumed to be normal

• Units are regarded as independently drawn from the same population (no

strata or clusters, in surveys may use these as random variables)

• Only simple (pairwise) associations among variable; no interaction

Most real data depart from these assumptions. But we may still be able

to use the normal model to produce good-quality imputations.
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The normal model: How about non-normal variables?

• If a variable is skewed, apply a transformation (sqrt, log, etc)

• If a variable is binary or ordinal, impute under the normal model

and round off imputed values to the nearest (OBSERVED) category

• Better methods are available (Yucel, Yulei and Zaslavsky, 2008) but

the gain is minimal

Simulations show that multiple imputation is quite robust to model

misspecification (Schafer 1997, ch. 6)

Completely observed categorical data A k-level categorical

variable with no missing values may be included in a normal model

• Replace the variable with k − 1 dummy codes

• Inferences are not harmed because the variable is never imputed
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The normal model: Complex Associations

• Normal model implies that each variable has an additive, linear

regression on the other variables. Imputations will not reflect

– nonlinear relationships

– interactions

• If Y1 and Y2 are completely observed, then we can include higher-

order variables Y 2
1 , Y1Y2, etc. without harm

• If missingness on Y1 and Y2 is mild, we may include higher-order

variables in the imputation model, but remove them from the

imputed dataset and recalculate them

• For these IveWare could be an alternative
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Data Example: Adolescent alcohol prevention trial (AAPT)

This example is intended for NORM DEMO!

Longitudinal study of substance use in Los Angeles area schools (Hansen and

Graham, 1991)

• n = 3574 students

• Let’s focus on the first wave of data

• Look for effects of POSCON and NEGCON on reported alcohol use,

controlling for other covariates

• Missing values due to nonresponse and attrition; some variables missing

by 33% by design (MAR is ok for missing by design)
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Data Example: AAPT

Strategy

1. Impute missing values m = 10 times using NORM software

• Include a dummy for sex

2. Fit a linear regression model (10 times) to predict the alcohol use

given covariates (POSCON, NEGCON and sex) to see the effects

of POSCON and NEGCON

3. Combine estimated coefficients and standard errors using Rubin’s

rule
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NORM: http://www.stat.psu.edu/ jls/misoftwa.html

Free Windows program for multiple imputation using Bayesian methods

based on a multivariate normal model. It acts as a

• Pre-processor, filling in the missing values so that other statistical

programs can make full use of your data

• post-processor, combining the output (estimates and standard

errors) from m statistical analyses to produce a single set of results
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NORM’s basic functions

• Summarize rates and patterns of missing values

• EM algorithm for efficient estimation of means, variances and

covariances from an incomplete data set

• Data augmentation procedure for creating proper multiple

imputations of missing values

• Series plots to diagnose the convergence behavior of data aug-

mentation

• Facility for combining the results of a multiply-imputed data

analysis, using Rubin.s (1987) rules for MI inference

All functions are invoked through an easy-to-use graphical Windows

interface
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NORM : Features

• no limit to the number of cases or variables (sometimes crashes

after 60 variables, better to use the “missing” library of Splus, or

“norm” library of R)

• interactively tabulate and plot variables

• include or exclude variables from the model or imputed data sets

• apply transformations to improve normality

• automatic rounding of imputed values to any precision, or to the

variable’s nearest observed values

• extensive on-line help manual
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NORM handout

• Screen shots of Norm software
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SAS PROC MI

• SAS procedure for creating multiple imputations

• Assumes sampled units to be independent (no clustering), so

important to incorporate design variables as much as possible

• Several methods are available for creating multiple imputations

• Method of choice depends on the missingness patterns
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SAS PROC MI : Choosing the imputation method

• Univariate or Monotone missingness: regression imputation

assuming a multivariate normality, or propensity score method.

• Arbitrary missing patterns: A markov chain monte carlo (mcmc

option) that relies on the NORM techniques

• More information available at

http://support.sas.com/rnd/app/da/new/802ce/stat/chap9/index.htm
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SAS PROC MI : Example code

* first let’s look at our unintersting example;

proc mi data=sbpmar seed=1234 out=outmi nimpute=10

Round= 1 1;

var x y;

mcmc timeplot(mean(y)) acfplot(mean(y));

run;

* because our example pertains to univariate missingness;

* we can apply propensity method (nonparametric) or monotone method as well;

* the latter is based on sequential and parametric;

* First propensity method;

proc mi data=sbpmar seed=1234 simple out=outmi;

monotone method=propensity;

var x y;

run;

* Now the monotone;

proc mi data=sbpmar seed=1234 simple out=outmi;

mcmc impute=monotone;

var x y;

run;

* Example 2: Many variables in a hypothetic "sample" data
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*multiply impute 10 datasets;

proc mi data=sample seed=32984 out=outmi nimpute=10

Minimum =94 42 0 0 -26 0 0 0 1 0 1 16 1 1 1 0 0

maximum=221 106 5 1 32 1 1 6 5 1 3.64 30 4 4 6 3 1

Round= 1 1 1 1 .01 1 1 1 1 1 .01 1 1 1 1 1 1;

var bps bpd sesum

racewb agecent marriedYN Finhs comsum exer

smoke trustsc decsum employ finance house

Noncompsc smoke_race;

mcmc timeplot(mean) acfplot(mean);

run;

• “seed” initializes the random number generator

• “outmi” is the output data that will contain the 10 imputed data,

it will have a variable called

‘‘_Imputation_’’

referring to the number of the imputed data

• Maximum and minimum are used to determine the ranges of the

(observed) variables
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• “round” indicates the units to round variables in the imputation

• var statements identifies the variables to be analyzed, all variables

must be numeric.
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SAS PROC MI : Results from SBP.MAR data

Multiple Imputation Variance Information

-----------------Variance-----------------

Variable Between Within Total DF

y 4288.539519 99.106847 4816.500317 0.5279

Multiple Imputation Variance Information

Relative Fraction

Increase Missing Relative

Variable in Variance Information Efficiency

y 47.599067 0.982747 0.910519

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum

y 92.756667 69.401011 . . 0.5279 -41.366667 194.966667
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SAS PROC MI : fitting models

* Example 1;

proc reg data=outmi outest=outmodel1 covout;

model x=y;

by _Imputation_;

run;

* now combine these regressions;

proc print data=outmodel1(obs=10);

var _Imputation_ _Type_ _Name_;

Intercept y;

proc mianalyze data=outmodel1;

var Intercept y;

run;

* Example 2;

*regression on bps and bpd;

proc reg data=outmi2 outest=outmodel5 covout;* noprint;

model bps bpd= smoke trustsc decsum racewb agecent marriedYN

Finhs smoke_race;

by _Imputation_;

run;

• Each imputed data set is used to fit a regression

• Important to use
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‘‘by _Imputation_’’

so that the reg. proc goes through the 10 imputed dataset
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SAS PROC MI : Example code (ctd.)

*Sort by Dependent variable so MI Analyze can examine both dependent variables;

proc sort data=outmodel5;

by _depvar_;

run;

*set ods file name;

ods rtf file=’d:\MI Model5.rtf’ style=minimal;

*combine parameter estimates and standard errors using Rubin’s rules;

proc mianalyze data=outmodel5 edf=158;

var intercept smoke trustsc decsum racewb agecent marriedYN

Finhs smoke_race ;

by _depvar_;

run;

• Finally, PROC MIANALYZE combines the 10 sets of regression

coefficients and SEs
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Regressing y on x using available cases

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -83.620 209.079 -0.400 0.728

sbp.mar[, 1] 1.472 1.360 1.083 0.392

Residual standard error: 34.74 on 2 degrees of freedom

(26 observations deleted due to missingness)

Multiple R-squared: 0.3696, Adjusted R-squared: 0.05439

F-statistic: 1.173 on 1 and 2 DF, p-value: 0.3921
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SAS PROC MI : Output

Model Information

Data Set WORK.OUTMODEL1

Number of Imputations 10

Multiple Imputation Variance Information

-----------------Variance-----------------

Parameter Between Within Total DF

Intercept 885.449655 127.448880 1101.443501 11.509

y 0.062924 0.006049 0.075266 10.642

Multiple Imputation Variance Information

Relative Fraction

Increase Missing Relative

Parameter in Variance Information Efficiency

Intercept 7.642238 0.900239 0.917411

y 11.442773 0.931415 0.914795

Multiple Imputation Parameter Estimates
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Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum

Intercept 94.772869 33.188002 22.11911 167.4266 11.509 49.573262 156.265705

y 0.262961 0.274346 -0.34336 0.8693 10.642 -0.226017 0.655549

Multiple Imputation Parameter Estimates

t for H0:

Parameter Theta0 Parameter=Theta0 Pr > |t|

Intercept 0 2.86 0.0150

y 0 0.96 0.3591
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Monitoring convergence

Time series plot (ideally we DO NOT want to see any pattern):
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Autocorrelation plot (ideally we want correlations to die down within a

few iterations):

Usually iterations die down around the same number of iterations of

EM.
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IveWare:

Y1 Y2 . .   . Yr

1

2

3

.

.

.

n

?

?

?
? ?

?

?

? : missing values (MAR)

n units are independent and

Identically distributed N(0,∑) 

: skip patterns

ALL KINDS OF VARIABLES:

CTS, BINARY, ORDINAL, ETC.
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IveWare: http://www.isr.umich.edu/src/smp/ive/

• SAS Macro developed by Raghunathan and colleagues at the

University of Michigan

• Primarily deals with missing values in surveys

• Also has an option for calculating accurate estimates of variances

in complex sample surveys, incorporating sampling weights

• No clustering, units are assumed to be independent
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IveWare: Imputing Survey Data

What to do with Skip patterns (restrictions), bounds

• Survey items on “mammography” or “smoking” are not applicable

to all individuals

• Should we set the values of men on mammography to missing?

• Probably better to assume a model on the correct sub-sample

• On some other items with incomplete data, appropriate mod-

els (such as truncated probability distribution) could be more

appropriate (e.g. “years of smoking”)
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IveWare : Idea

• Imputation on a variable by variable basis conditioning on all

observed variables

• Creates imputations through a sequence of multiple hierarchical

regressions with covariates including all other variables (observed

or imputed)

• The sequence of imputation occurs in a cyclical manner, overwriting

previously drawn values

• Type of regression models depends on the variable being imputed
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IveWare (ctd.)

Models

• linear regression for continuous variables

• logistic and polytomous regression for binary and ordinal variables

• multinomial regression for nominal

• two-part model for semi-continuous variables
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IveWare (ctd.)

• Draws from “pragmatic” conditional distributions

• Cannot be derived from a joint distribution

• Difficult to assess analytically appropriateness of this “approxima-

tion”

• Useful for creating multiple imputations especially in highly

multivariate problems
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IveWare: Modules

• IMPUTE: creates multiply imputed datasets using the sequential

approach

• DESCRIBE: estimates population parameters (means, subgroup

differences), nice feature for complex sample surveys

• REGRESS: fits a variety of models for data resulting from a

complex sample design

• SASMOD: allows users to take into account complex sample

design features when analysing data with several SAS procs.

• All three modules (DESCRIBE, REGRESS, SASMOD) allow

missing values and preform multiple imputation analysis

119



Missing Data Methods'

&

$

%

2. Methods for categorical incomplete data: CAT

• Splus (part of library “missing”) and R (library “cat”) function

developed by Schafer (1997)

• Imputation model is a loglinear model

• Markov-Chain Monte Carlo method for simulating from this

loglinear model

• More description available at

http://cran.r-project.org/doc/packages/cat.pdf

• As the number of categorical variables increases, becomes almost

impossible to function

• IveWare should be considered in dealing with large number (>10)

of categorical variables with missing values
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CAT: R functions

• Number of functions is available in the R library called CAT, some

of the most useful ones are:

– prelim.cat: prepares the data by grouping and sorting (by missingness

patterns, etc.) to be used by the following functions

– em.cat or ecm.cat: Finds ML estimate or posterior mode of cell

probabilities under the saturated model

– da.cat: simulates unknown parameters from the observed-data

posterior (or likelihood) under a saturated model. Could be used with

the imp.cat() function

– imp.cat: Performs single random imputation of missing values in a

categorical dataset under a value of cell probabilities (from em.cat or

da.cat)

– mi.inference: Combines estimates and SEs from m completed-data

analyses
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CAT: R functions

Important note on data matrix x:

• The rows of x correspond to observational units, and the columns

to variables

• Missing values are denoted by NA

• The categorical variables must be coded with consecutive positive

integers starting with 1. For example, a binary variable must be

coded as 1,2 rather than 0,1.
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CAT: Example code

#

# Example 1 Based on Schafer’s p. 329 and ss. This is a toy version,

# using a much shorter length of chain than required. To

# generate results comparable with those in the book, edit

# the ## Not run: line below and comment the previous one.

#

data(belt)

attach(belt.frame)

s <- prelim.cat(x=belt[,-7],counts=belt[,7])

m <- c(1,2,5,6,0,1,2,3,4,0,3,4,5,6,0,1,3,5,0,1,4,6,0,2,4,6)

theta <- em.cat(s,margins=m, # excruciantingly slow; needs 2558

maxits=5000) # iterations.

rngseed(1234)

#

# Now ten multiple imputations of the missing variables B2, I2 are

# generated, by running a chain and taking every 2500th observation.

# Prior hyperparameter is set at 0.5 as in Schafer’s p. 329

#

# Impute from parameters obtained from em.cat

imp<- imp.cat(s,theta)
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3. Methods for categorical mix data: MIX

• Splus (part of library “missing”) and R (library “mix”) function

developed by Schafer (1997)

• Imputation model is a general location model

• Think of this model as a model for contingency table cell probabil-

ities (multinomial) and in each cell, multivariate normality for the

variables

• Markov-Chain Monte Carlo method for simulating from this

loglinear model
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Methods for categorical mix data: MIX (ctd.)

• More description available at

http://cran.r-project.org/doc/packages/mix.pdf

• As the number of categorical variables increases, becomes almost

impossible to function

• IveWare should be considered in dealing with large number (>10)

of categorical variables with missing values
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MIX: R functions

• Similar to CAT:

– prelim.mix: prepares the data by grouping and sorting (by missing-

ness patterns, etc.) to be used by the following functions

– em.mix or ecm.mix: Finds ML estimate or posterior mode of cell

probabilities under the saturated model

– da.mix: simulates unknown parameters from the observed-data

posterior (or likelihood) under a saturated model. Could be used with

the imp.cat() function

– imp.mix: Performs single random imputation of missing values under

a value of cell probabilities (em.mix or da.mix)

– loglik.mix: Calculates the observed-data loglikelihood under the

general location model at a userspecified parameter value.

– mi.inference: Combines estimates, SEs from m completed-data

analyses
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MIX: R functions

Important note on data matrix x:

• The rows of x correspond to observational units, and the columns

to variables

• Missing values are denoted by NA

• The categorical variables must be in the first p columns of x, and

they must be coded with consecutive positive integers starting with

1.
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4. Methods for multilevel incomplete data

Multivariate clustered (longitudinal) data

✔

✔ ✔?   ?

?
?
?

? ?

...

...

...

✔       ✔      ...?

✔   ✔      ✔    ✔      

?
?

?✔    ✔      ✔    ✔      ✔    ✔      ...

? ...

✔   ✔      
?

?...

? ? ?...

?? ?...

  Y   Y...

        

Y   Y ...   Y

✔   ✔      
.  .  .  

?

Y   Y   Y

? ?
✔    ✔      
? ? ...

...

...

...

?
✔

? ? ... ?

✔    ✔      ... ✔           

Ysubject

2
1

3
.
.
.

n 1

School 1   School 2  School M

 
 

 1  2 r  1  2 r  1  2 r

1
2
3
.
.
.

n 2  rn

1
2
3
.
.
.

√
= observed value

? = missing value

Y1, Y2, . . . , Yr = set of r response variables
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Data Nature

Important Relationships

• Relationships among variables Y1, . . . , Yr within a unit at each time

• Growth or change in any variable Yj within an individual across

time points

• Relationships between response variables Y1, . . . , Yr and any addi-

tional subject level (non-time varying) covariates included in the

model

• sampling design producing correlated units
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Example 1

Adolescent alcohol prevention trial Longitudinal study of

adolescent substance use in Los Angeles area (Hansen and Graham,

1991).

• Cohort of 3,574 children from 45 schools

• Substance-use attitudes and behaviors measured yearly by ques-

tionnaire in grades 5-10

• Typical nonresponse due to absenteeism, attrition, etc.

• Some missingness by design
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Percent missing by grade

5 6 7 8 9 10

DRINKING 2 24 24 33 35 44

POSCON 47 55 62 100 66 63

NEGCON 48 56 62 100 100 100
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Possible imputation method with NORM

• “Unstack” responses and time-varying covariates apply NORM

Subj. Variables

---- -------------------------------------------------

1 SEX ALC_5... ALC_10 POS_5...POS_10 NEG_5...NEG_10

2 SEX ALC_5... ALC_10 POS_5...POS_10 NEG_5...NEG_10

. ...

. ...

. ...

M SEX ALC_5... ALC_10 POS_5...POS_10 NEG_5...NEG_10

-------------------------------------------------------

• preserves arbitrary covariance structures

• becomes unwieldly for more than few time points and covariates

• requires small number of common time point
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Imputing with PAN

• Estimation and imputation routines for two-level multivariate linear

mixed model

– preserves “main effects” of time-varying covariates on time-

varying response

– correctly reflects sampling design or correlated data into impu-

tations

– therefore, standard errors are not understated
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Two-level model

yi = Xiβ + Zibi + ǫi, i = 1, . . . ,m

yi = (ni × r) matrix of responses

CONTAINS ALL THE VARIABLES WITH MISSING VALUES

Xi = (ni × p) matrix of covariates

NO MISSING VALUES

Zi = (ni × q) matrix of covariates

β = (p× r) regression coefficients

vec(bi) ∼ Nqr(0, ψ) random effects

vec(ǫi) ∼ Nnir(0,Σ⊗ Ini
) errors

ψ : unstructured or block diagonal

e.g. r blocks of size q × q
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Two-level model: creating imputations

MCMC algorithm (Gibbs sampler)

• Unknown quantities Ymis , bi, θ = (β,Σ,Ψ)

• If bi’s are known, this would be just a fixed model drawing θ is easy

• For fixed θ draw bi

• For fixed bi, θ, draw Ymis
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Prior distributions

β ∼ uniform on R
√∇

(improper),

Ψ−1 ∼ Wishart(ν1,Λ1), ν1 ≥ rq,

Σ−1 ∼ Wishart(ν2,Λ2), ν2 ≥ r,

where

ν−1
1 Λ−1

1 : prior guess for Ψ, and

ν−1
2 Λ−1

2 : prior guess for Σ.
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Example

Adolescent alcohol prevention trial

Examined a cohort of m = 3574 children and focused on three variables

• DRINKING (Y1) : composite measure of self-reported alcohol use

• POSCON (Y2) : perceived positive consequences of use

• NEGCON (Y3) : perceived negative consequences of use

Jointly model POSCON and NEGCON on DRINKING, using all data

from grades 5-10
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Example (ctd.)

Grade

5 6 7 8 9 10

DRINKING −1.43 −1.12 −0.57 0.09 1.29 1.97

(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)

POSCON 1.30 1.34 1.48 — 1.84 1.96

(0.61) (0.62) (0.74) — (0.89) (0.91)

NEGCON 2.94 3.05 3.07 — — —

(0.76) (0.75) (0.77) — — —

• Apply log transformation to DRINKING to make the constant

variance assumption more plausible

• use a multivariate linear mixed model with intercepts and slopes

varying by individual

139



Missing Data Methods'

&

$

%

Assessing convergence

Autocorrelation functions for several elements of θ
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• analyzed each imputed dataset using 2-level growth model for

DRINKING

• combine 10 sets of coefficients and standard errors using Rubin’s

(1987) methods

Estimated coefficients, standard errors, degrees of freedom and percent missing

information from multiply-imputed growth-curve analysis

est. SE df % missing

intercept −1.380 0.052 34 58

grade (1=5th, . . . , 6=10th) 0.139 0.0077 121 28

sex (0=female, 1=male) 0.08 0.028 251 19

sex × grade −0.013 0.007 94 32

POSCON 1.113 0.035 21 67

NEGCON −0.245 0.033 46 46
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Recent research

• 3-level model (both longitudinal and clustered) is also available as

R function (Yucel, 2008)

• R package mlmmm (Yucel, 2008)

• Models with random covariances (Yucel, 2008)

• Extending IveWare to handle clustering will be available as R

package called SHRIMP (Yucel, Schenker and Raghunathan, 2007)
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R code for pan

library(pan)

library(foreign)

data.restore("mglmm.dump")

#

# get missingness rates by grade

for(i in 1:6) print(round(100*mean(is.na(y[occ==i,1])),1))

for(i in 1:6) print(round(100*mean(is.na(y[occ==i,2])),1))

for(i in 1:6) print(round(100*mean(is.na(y[occ==i,3])),1))

par(mfrow=c(4,6))

for(i in 1:6) hist(y[occ==i,1],density=-1)

for(i in 1:6) print(round(mean(y[occ==i,1],na.rm=T),2))

for(i in 1:6) print(round(sqrt(var(y[occ==i&!is.na(y[,1]),1])),2))

#

#

########################################################################

# y = Nxr matrix of responses

# subj = Nx1 vector of subject indicators coded as 1,2,...,m

# occ = Nx1 vector of occasion (time) indicators coded as 1,2,...,nmax

# pred = Nxpcol matrix of predictors

# xcol = px1 vector of integers indicating the columns of pred in X

# zcol = qx1 vector of integers indicating the columns of pred in Z

########################################################################

# log transformation to the alc use
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y[!is.na(y[,1]),1]<-log(y[!is.na(y[,1]),1]+2)

prior<-list(a=3,Binv=3*diag(rep(1,3)),c=6,Dinv=6*diag(rep(1,6)))

#

tmp1<-pan(y,subj,pred,xcol,zcol,prior,seed=123456,iter=1000)

tmp2<-pan(y,subj,pred,xcol,zcol,prior,seed=2256,iter=1000,start=tmp1$last)

tmp3<-pan(y,subj,pred,xcol,zcol,prior,seed=8006,iter=1000,start=tmp2$last)

tmp4<-pan(y,subj,pred,xcol,zcol,prior,seed=5456,iter=1000,start=tmp3$last)

tmp5<-pan(y,subj,pred,xcol,zcol,prior,seed=4524,iter=1000,start=tmp4$last)

tmp6<-pan(y,subj,pred,xcol,zcol,prior,seed=5602,iter=1000,start=tmp5$last)

tmp7<-pan(y,subj,pred,xcol,zcol,prior,seed=7820,iter=1000,start=tmp6$last)

tmp8<-pan(y,subj,pred,xcol,zcol,prior,seed=9824,iter=1000,start=tmp7$last)

tmp9<-pan(y,subj,pred,xcol,zcol,prior,seed=4353,iter=1000,start=tmp8$last)

tmp10<-pan(y,subj,pred,xcol,zcol,prior,seed=5363,iter=1000,start=tmp9$last)

tmp11<-pan(y,subj,pred,xcol,zcol,prior,seed=444,iter=1000,start=tmp10$last)

# check the convergence

psi<-array(0,c(6,6,11000))

psi[,, 1:1000]<-tmp1$psi

psi[,,1001:2000]<-tmp2$psi

psi[,,2001:3000]<-tmp3$psi

psi[,,3001:4000]<-tmp4$psi

psi[,,4001:5000]<-tmp5$psi

psi[,,5001:6000]<-tmp6$psi

psi[,,6001:7000]<-tmp7$psi

psi[,,7001:8000]<-tmp8$psi

psi[,,8001:9000]<-tmp9$psi

psi[,,9001:10000]<-tmp10$psi

psi[,,10001:11000]<-tmp11$psi
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sigma<-array(0,c(3,3,11000))

sigma[,, 1:1000]<-tmp1$sigma

sigma[,,1001:2000]<-tmp2$sigma

sigma[,,2001:3000]<-tmp3$sigma

sigma[,,3001:4000]<-tmp4$sigma

sigma[,,4001:5000]<-tmp5$sigma

sigma[,,5001:6000]<-tmp6$sigma

sigma[,,6001:7000]<-tmp7$sigma

sigma[,,7001:8000]<-tmp8$sigma

sigma[,,8001:9000]<-tmp9$sigma

sigma[,,9001:10000]<-tmp10$sigma

sigma[,,10001:11000]<-tmp11$sigma

beta<-array(0,c(4,3,11000))

beta[,, 1:1000]<-tmp1$beta

beta[,,1001:2000]<-tmp2$beta

beta[,,2001:3000]<-tmp3$beta

beta[,,3001:4000]<-tmp4$beta

beta[,,4001:5000]<-tmp5$beta

beta[,,5001:6000]<-tmp6$beta

beta[,,6001:7000]<-tmp7$beta

beta[,,7001:8000]<-tmp8$beta

beta[,,8001:9000]<-tmp9$beta

beta[,,9001:10000]<-tmp10$beta

beta[,,10001:11000]<-tmp11$beta

#

par(mfrow=c(6,6))

for(i in 1:6){ for(j in 1:6)

plot(1:3000,psi[i,j,1:3000],type="l")}
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for(i in 1:6){ for(j in 1:6)

acf(psi[i,j,1001:11000],lag.max=200)}

#

sex<-matrix(pred[,3],ncol=6,byrow=T)[,1]

reshape<-function(y){

newy<-t(y)

dim(newy)<-c(18,3574)

t(newy)}

orig<-cbind(sex,reshape(y))

#

imp1<-cbind(sex,reshape(tmp2$y))

imp2<-cbind(sex,reshape(tmp3$y))

imp3<-cbind(sex,reshape(tmp4$y))

imp4<-cbind(sex,reshape(tmp5$y))

imp5<-cbind(sex,reshape(tmp6$y))

imp6<-cbind(sex,reshape(tmp7$y))

imp7<-cbind(sex,reshape(tmp8$y))

imp8<-cbind(sex,reshape(tmp9$y))

imp9<-cbind(sex,reshape(tmp10$y))

imp10<-cbind(sex,reshape(tmp11$y))

# roundoff is a function for rounding the cat. variables imputed under normal

roundoff<-function(imp){

imp[,c(2,5,8,11,14,17)]<-round(imp[,c(2,5,8,11,14,17)],5)

imp[,c(3,4,6,7,9,10,12,13,15,16,18,19)]<-

round(imp[,c(3,4,6,7,9,10,12,13,15,16,18,19)])

for(i in c(3,4,6,7,9,10,12,13,15,16,18,19)){

imp[imp[,i]<1,i]<-1

imp[imp[,i]>4,i]<-4}
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imp}

imp1<-roundoff(imp1)

imp2<-roundoff(imp2)

imp3<-roundoff(imp3)

imp4<-roundoff(imp4)

imp5<-roundoff(imp5)

imp6<-roundoff(imp6)

imp7<-roundoff(imp7)

imp8<-roundoff(imp8)

imp9<-roundoff(imp9)

imp10<-roundoff(imp10)

# the following is a function for outputting data

output<-function(imp,filename){

sink(filename)

cat(paste(format(imp[,1]),format(imp[,2]),format(imp[,3]),

format(imp[,4]),format(imp[,5]),format(imp[,6]),

format(imp[,7]),format(imp[,8]),format(imp[,9]),

format(imp[,10]),format(imp[,11]),format(imp[,12]),

format(imp[,13]),format(imp[,14]),format(imp[,15]),

format(imp[,16]),format(imp[,17]),format(imp[,18]),

format(imp[,19])),sep="\n")

sink()

invisible()}

output(imp1,"imp1.dat")

output(imp2,"imp2.dat")

output(imp3,"imp3.dat")

output(imp4,"imp4.dat")

output(imp5,"imp5.dat")

output(imp6,"imp6.dat")
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output(imp7,"imp7.dat")

output(imp8,"imp8.dat")

output(imp9,"imp9.dat")

output(imp10,"imp10.dat")

#

par(mfrow=c(4,6))

hist(orig[,2],density=-1)

hist(orig[,5],density=-1)

hist(orig[,8],density=-1)

hist(orig[,11],density=-1)

hist(orig[,14],density=-1)

hist(orig[,17],density=-1)

hist(orig[,3],density=-1)

hist(orig[,6],density=-1)

hist(orig[,9],density=-1)

frame();frame()

hist(orig[,15],density=-1)

hist(orig[,18],density=-1)

hist(orig[,4],density=-1)

hist(orig[,7],density=-1)

hist(orig[,10],density=-1)

par(mfrow=c(4,6))

hist(imp1[,2],density=-1)

hist(imp1[,5],density=-1)

hist(imp1[,8],density=-1)

hist(imp1[,11],density=-1)
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hist(imp1[,14],density=-1)

hist(imp1[,17],density=-1)

hist(imp1[,3],density=-1)

hist(imp1[,6],density=-1)

hist(imp1[,9],density=-1)

hist(imp1[,12],density=-1)

hist(imp1[,15],density=-1)

hist(imp1[,18],density=-1)

hist(imp1[,4],density=-1)

hist(imp1[,7],density=-1)

hist(imp1[,10],density=-1)

hist(imp1[,13],density=-1)

hist(imp1[,16],density=-1)

hist(imp1[,19],density=-1)

########################################################################

# now analyze the imputed datasets

library(lmm)

result<-as.list(1:10)

for(i in 1:10){

fna<-paste("imp",format(i),".dat",sep="")

tmp<-matrix(scan(fna),ncol=19,byrow=T)

alc<-tmp[,c(2,5,8,11,14,17)]

m<-nrow(tmp)

poscon<-tmp[,c(3,6,9,12,15,18)]

negcon<-tmp[,c(4,7,10,13,16,19)]

y<-as.vector(t(alc))

poscon<-as.vector(t(poscon))
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negcon<-as.vector(t(negcon))

#

occ<-matrix(1:6,nrow(alc),ncol(alc),byrow=T)

sex<-cbind(tmp[,1],tmp[,1],tmp[,1],tmp[,1],tmp[,1],tmp[,1])

subj<-1:nrow(alc)

subj<-cbind(subj,subj,subj,subj,subj,subj)

occ<-as.vector(t(occ))

subj<-as.vector(t(subj))

sex<-as.vector(t(sex))

pred<-cbind(int=1,time=occ,sex=sex,time.sex=occ*sex,poscon=poscon,

negcon=negcon)

xcol<-1:6

zcol<-1:2

#

result[[i]]<-ecme(y,subj,occ,pred,xcol,zcol,method=3)}

#

est<-as.list(1:10)

SE<-as.list(1:10)

for(i in 1:10){

est[[i]]<-result[[i]]$beta

SE[[i]]<-sqrt(diag(result[[i]]$cov.beta))}

res<-mi.inference(est,SE)

res<-cbind(est=round(res$est,4),SE=round(res$std.err,4),

df=round(res$df),pval=round(res$signif,3),

pctminf=round(100*res$fminf))
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