
Null Hypothesis Significance Testing V.  APSY 510 Lecture Notes.
B. Dudek.  Not for General Distribution.  Class Member Usage Only.
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Chi-Square and F-Distributions,
and Dispersion Tests

Recall from Chapter 4 material on:

           If Y is normally Distributed, then  and 
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If the population distribution of Y is normally distributed, then Z will also be normally
distributed, and is called the standard Normal Z.

Now consider the distribution of squared Z’s:

Imagine what the shape of the distribution so Z2 would look like. 
Think of squaring each value under a standard normal distribution. 
This produces an outcome which eliminates all negative value, and
yields a probability distribution which appears to peak at zero, and
show declining probabilities as Z2 increases.  Notice where it
appears to be located (i.e., the expected value).

This squared Z distribution is called a Chi-Squared Distribution.
Its expected value is 1.0, and its variance is 2.0.  It is thus the distribution of one squared Z.

Now consider summing squared Z’s, where each is randomly, and independently, sampled.  Thus
we produce a new Random variable, where the value is the sum of squared Z’s.
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Simulations of Std Normal Z and Chi-Square
Run with N=14,997 and graphed in SPSS as a “Histogram”.  Thus the intervals represent
grouping of the X values into equal intervals for purposes of production of these histograms. 
The actual distributions are continuous.  Each Chi-square distribution is titled CHISQ(df) where
the number represents degrees of freedom. Note the asymmetry of Z even with this large N -
simulation is not perfect.

Note on all distributions, 
, where v=df, and( )E vvχ

2 =

.  Thus each of these five distributionsσ
χv

v2
2 2=

is “centered” on their expected value.
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Algebraic Basis relating Chi-Squared Variables,
Population and Sample Variances, and the

One-Sample Dispersion Test

Starting point is re-examination of s2, in light of above:         
( )

s
Y

NY
i

N

2 1

2

1
=

−

−
=
∑ μ

Thus,

        Recall that     N-1 = df   
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Therefore, for a sampling situation where N data points are sampled randomly, and a variance
calculated:
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Thus rearranging the above formula   gives .
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These algebraic substitutions enable the creation of a test about population dispersion
hypotheses.
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Goal: (1) We want to test the hypothesis that a population variance (unknown) equals a
specified value.  

(2) Use the standard approach of NHST
(3) Create a test statistic which reflects the “best” critical test of the hypothesis.

H0:  , where is some specified value (e.g., H0: )σ σ2
0
2= σ 0

2 σ 0
2 225=

Consider a sampling situation where we draw a random sample of size N, and calculate s2, the
sample variance on those data.  Do our data give us reason to reject the null hypothesis?

H1:   if two-tailed, non-directionalσ σ2 2≠ o

  if one-tailed (use left tail of test distribution)σ σ2 2< o

  if two-tailed, (use right tail of test distribution)σ σ2 2> o

Form the test statistic from the above algebra:
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Example:
One-tailed, alpha = .05
H0:                          N=26σ σ0

2
0225 15= =and

H1: s2 = 350 (thus s= 18.7)σ 0
2 225>

[(25)350]/225 = 38.89 
Using Appendix, Table IV, we see that the Critical Value for   =  37.6525χ25

2

Thus our observation falls in the region of rejection and we reject H0.

The sample data are deviant enough so that (with these df) we can reject the null.

Use table 4 for df up to 100.  Above that, use the “large sample approximation” in Hays section
9.6, especially equation 9.6.3

Also examine section 9.5 to see that confidence intervals for s and s2 are available, and based on
the use of the chi-squared distribution.

Assumption: Normality of the random variable population distribution is more important here
than for the location tests considered earlier (section 9.7 in Hays).
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F-Distribution

The F-distribution is defined as the ratio of two chi-squared variables, each divided by their own
respective df.

Thus each F has both numerator (v1) and denominator (v2) associated with it. As
is the case for “t” and Chi-squared, F is a family of distributions.   This is why
tables of critical values are extensive combinations of numerator and
denominator df.

Now consider the usage of F to test two-sample dispersion hypotheses.

The Two-Sample Dispersion Problem

H0:  where  represent population variance of two populationsσ σ1
2

2
2= σ σ1

2
2
2and

HA:  , yielding a non-directional, two-tailed test here in this illustrationσ σ1
2

2
2≠

Our task, once again is to find an appropriate test statistic.
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samples, drawn at random.

If the null is true, then the following ratio is distributed as F, (when the random sampling and
normality assumptions are met)

    is distributed as     = F(v1,v2)
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From Table V, note that C.V.  F(1,15) = 4.54   and sqrt 4.54 = 2.13  
- why interesting?

E(Fv1,v2) = v2/(v2-2)

Thus the expected value of an F is close to 1.0, but not exactly.  As denominator df rises, the
expected value will be closer to one.

Now, if we draw two samples, at random, from the same population, or from two populations
which have the same variance, then

    is distributed as F with v1=N1-1, and v2=N2-1
s
s

1
2

2
2

This approximation holds well if the normality assumption is met.

Consider an illustration:

Sample s2 N
I 400 (sd=20) 11
II 144 (sd=12) 15

F(10,14)= 400/144=2.78

It is typical in this test to place the larger of the two values in the numerator and use only the
upper tail of the F distribution.  Even though it is technically a two-tailed test, this arrangement
allows us to place the whole alpha in the upper tail and simplify the process.  (See Hays section
9.9 for use of the F-tables and how to find lower tail probabilities if ever necessary)

From Table V, we see that the C.V. for an F(10,14) = 2.60 when α = .05
Conclusion: reject H0 as a 2-tailed test with α = .05

We conclude that the first sample was derived from a population which did not have the
same variance as the population from which the second sample was derived.

Notice two things:
1.  The ratio of the sd’s does not have to exceed 2/1 in order for rejection of some null
hypotheses.
2.  Recognize how this might help us in deciding the appropriateness of the homogeneity of
variance assumption for the two-sample location test we considered earlier.
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Relationships among the Distributions

1.  Normal is parent for each and limiting form of  t and chi-square.
2.  “t” approximates std normal Z when df are large.
3.  Chi-square is a sum of squared Z’s
4.  F is the ratio of two chi-squareds, each divided by their own df
5.  t Fv V2 2

2
1= ( , )

Proof of point #5:

  from the approximation permitted in the one-sample location testt
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Multiply both numerator and denominator by , and rearrange numerator to place the N
 term in the denominator of the numerator ratio.N

Now square both sides:

 From definitions shown
above, both the numerator
and denominator are now
chi-squared variables, each
divided by their respective
df.
It is also possible to derive
this proof for the two-sample
“t”, but we won’t here.
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Considering these four primary probability density functions, and families of functions, it would
help to summarize each of their respective 

Expected Values
and
Variances (not shown for F)

and recognize their shapes as N or df becomes large.

Rely, in part, on section 9.11 in the textbook for this.


