
Bootstrapping illustrated 
Comparing the standard mean, 10 and 20% trimmed means, & median  

 
            Before discussing the main topic, let us quickly review sampling distributions so that 
everyone is clear on the major theoretical background. 
 
 Because the concept of a sampling distribution of a statistic (especially a mean) is so 
fundamental to bootstrapping – what it’s about, why it works as it does – I want to review the 
following: The sampling distribution of the mean has three principal characteristics you should 
remember: (1) For any sample size n, the mean of all (!) sample means [drawn from a finite 
population] is necessarily equal to the population mean (such a statistic is said to be unbiased); 
(2) The variance of the distribution of all means (always) equals the population variance divided 
by n; and (perhaps surprisingly), (3) As sample size, n, grows larger, the shape of the sampling 
distribution of the mean tends toward that of a normal curve, regardless of the shape or form of 
the parent population. Thus, it is properly said that the distribution of the sample mean, 
necessarily has mean µ, and variance σ2/n, where these Greek letters stand for the population 
mean and variance respectively.  Moreover, such a sampling distribution approaches normal 
form as the sample size n grows larger for [virtually] every population!     It is the generality of 
the last point that is so distinctive. The square root of the variance σ2/n (written as σ/√n) is called 
the standard error of the mean (i.e., the standard deviation of the sampling distribution of the 
mean); a term that is frequently encountered in statistical practice. What has just been stated are 
the principal results of the ‘Central limit theorem.’ (Stop to note that the sampling distribution 
[of any statistic] is itself a population; but such a distribution is wholly distinct from the 
distribution of the parent population, or from the distribution of any particular sample. Because 
of it’s status as a population, the characteristics of a sampling distribution are generally denoted 
by Greek letters [consider that all possible samples of a given size were the sources of the 
statistics].  But don’t confuse the sampling distribution (of any statistic…and there is generally a 
different one for different statistics) with the parent population from which samples were drawn. 
When we speak about a bootstrap distribution of a statistic we are talking about an approximate 
sampling distribution of a particular statistic, based on a ‘large’ number of bootstrap samples; 
and for each sample, the sampling is done with replacement from a particular ‘sample-as-
population’. And each sample is of the same size as the original. Still that ‘large’ number [1000 
below] of statistics is far smaller than the total of all possible samples, which is generally n to the 
power n in a bootstrap context, or N to the power n, for a finite population of size N.)  
 
   In practice, bootstrapping entails sampling with replacement from a vector (or ‘rows’ of 
matrix or data frame; see next page, bottom for how to do in R), so that each bootstrap sample is 
always the same size as the original.  But don’t confine your thinking to just the mean as we 
begin to consider bootstrapping; in general, bootstrap distributions can be created for any statistic 
that can be computed – and each statistic is based on a set of resampled data points.  
 
 The following illustration begins from a vector y that contains n = 100 values, originally 
generated as a random sample from the t3 distribution, i.e. t w/ 3 degrees of freedom, and then 
scaled to have a mean of 20 and a standard deviation of about 3. This accounts for the relatively 
long tails of y, compared with a Gaussian (normal) distribution that you see below. See plot of y 
(which is both a sample and a population, depending on your point of view – and both ideas are 
relevant!); its summary statistics (parameters?) are given below. 



     

 
Here is the R function I used to obtain four central tendency estimates for each of 1000 bootstrap 
samples:   (Copy and paste means4 into your R session) 
means4 <- function(x,tr1=.1,tr2=.2) 
{xm1 <- mean(x) 
xmt.1 <- mean(x, trim =tr1)  # 10% trimmed mean  
xmt.2 <- mean(x,trim=tr2)    # 20% trimmed mean 
xm.5 <- median(x)          # 50% trimmed mean = median 
xms <- c(xm1, xmt.1,xmt.2, xm.5) 
xms }   
#the four ‘means’ above are given as mean 1...mean4 below.    
Now, we use the bootstrap function from the library bootstrap: 
mns4.y <- bootstrap(y,nboots=1000,means4)   command used for bootstrap run  
                                   (1000 replicates)[ nboot >= 1000 for ‘good’ C.I’s] 
       I generated 1000 bootstrap replications of the four statistics [for library: bootstrap in R] 
Numerical summary of bootstrap results:   
>cbind(my.summary(xt3),my.summary(mns4.500)) 
       pop. mean1 mean2 mean3 mean4 #mean1 is just conventional mean. 
means 20.00 19.99 20.01 20.00 20.02 departures from 20 indicate bias 
s.d.s  3.03  0.30  0.26  0.26  0.24 #first value is ‘popul’ s.d./rest 
skewns-1.04 -0.07  0.00 -0.09 -0.06  of s.d.s are bootstrap s.e.’s 
                                      will discuss! See plot next p. 
     #key results in bold italics above AND BELOW. 
A second run, again w/ 1000 bootstrap replictations, gave results: 
means  19.99 20.02 20.01 20.03   but I ignore the pop. values here 
s.d.s   0.30  0.25  0.25  0.24    as they did not change. 
skewns -0.07  0.10  0.00 -0.02   For practical purposes, identical. 
 
Following are the four bootstrap distributions for the first set: 



 
NB: The initial ‘population’ was a long-tailed sample. It’s use affords an opportunity to study the 
conventional sample mean as an estimate of the ‘center’ of a distribution, when normality does not hold. 
We in fact see below that the conventional mean is the worst of the four estimators of the center of the 
distribution of the parent population, based on 1000 bootstrap samples. Remember initial sample as 
population had n=100 scores, so that n = 100 for each sample. Thus, the first s.e., for mean1, can be 
calculated by theory; that theory says divide the population s.d. by sqrt(n); here 3.03/sqrt(100)=.303.  
We are most informed by the derived standard error estimates; these quantify how well these 
different estimators of the ‘center’ of this distribution work in relation to one another. 
To repeat, each bootstrap sample entails sampling WITH replacement from the elements of the 
initial data vector y.  Each of the B = 1000 bootstrap samples contains n = 100 resampled 
scores, and all four statistics (‘means’) were computed for each bootstrap sample.  The 
summary results, and especially standard error estimates, based on the bootstrap replicates are 
the principal results on which one will usually focus in studies like this. See the documentation 
for ‘bootstrap’ for more information as to what this function does, or can do.  
 
  The first major book on the bootstrap was written by Bradley Efron, inventor of the 
bootstrap, and Tibshirani: ‘An introduction to the bootstrap’, 1993.  There are now at least a 
dozen books, many of them technical, about bootstrapping.  The May 2003 issue of Statistical 
Science is devoted exclusively to articles on bootstrapping, for its 25th anniversary.  See the first 
and last web-source below R functions for bootstrapping.   
      Some things you may find useful about bootstrapping within the world of R: 
1.  A vector such as y, regarded as y[1:n], where one controls contents, e.g. y[c(1,3)] = 1st and 3rd 
elements of y; or y[n:1] presents y values in reverse order; or y[sample(1:n,n,repl=T)] yields a 
bootstrap sample of y, of size n; and the latter, repeated, becomes a basis for bootstrap analysis. 
2.  A matrix such as yy, regarded as yy[1:n,1:p] (of order n x p) can be examined in parts using 
bracket notation; e.g. yy[1:3, ] displays the first 3 rows of yy; also, to sample the rows of yy, use 
yy[sample(1:n,n,repl=T), ], where comma in [ , ] separates row and column designations.  



 
Bootstrapping sources on the web: 

 
www.ats.ucla.edu/stat/SPLUS/library/bootstrap.htm See programming info (SPLUS is like R) 
http://www.insightful.com/Hesterberg/bootstrap/    See articles and tech. reports in particular. 
     Latter site provides information about new bootstrap methods and code for SPLUS as well as 
MANY other interesting things such as how students can get a free copy (!) of SPLUS.  Study 
this site; doing so will uncover articles such as Hesterberg’s (with others, 2003?)  
Bootstrap Methods and Permutation Tests, available at  
http://bcs.whfreeman.com/pbs/cat_160/PBS18.pdf , and also Hesterberg’s (1998), Simulation and 
Bootstrapping for Teaching Statistics, Proceedings of the Statistical Education Section, American 
Statistical Association, 44-52; at least the first of these is readable, and you should certainly 
examine that one. 
            R functions for bootstrapping can be found in the bootstrap and the boot library, so you 
should examine the help files for several of the functions in these libraries to see how to proceed. 
Note that bootstrap is a much smaller library than boot, and generally easier to use effectively. 
I recommend that you begin w/ the function bootstrap in the library of the same name. 
         The next page provides a second illustration of the use of the means4 function. 



A second illustration using means4 to do boostrapping (R cmds shown) 
This time we use the following population (also, a sample …to be discussed), of size N = 100: 

Mean=   
20.00 
s.d.=    
1.76 
skewns  
=0.28 
low=    
13.04 
high=   
28.02 

The decimal point is at the | 
 12 | 0 
 14 | 7 
 16 | 6783 
 18 | 001224677888900011122444445666666777899999 
 20 | 00111122233334455566677778888999000112467778899 
 22 | 248 
 24 | 3 
 26 |  
 28 | 0 
      This population is starting point for 1000 bootstrap samples. 
note in,  particular that the MEAN = 20.00 and σ = 1.76 
AND that it has longer tails than would a normal distribution 

 
Cmds 
used  
 
 
 
 

> bt.xt4<-bootstrap(xt4,1000,theta=means4) 
then >par(mfrow(c(2,2)) to set up 4 panels, 
>summary(bt.xt4) 
               Length Class  Mode    
thetastar      4000   -none- numeric 
func.thetastar    0   -none- NULL 
 . . . . 
>truehist(bt.xt4$the[1,],22,col=13,xlim= 
c(19,21))            ^ then rows 2,3,4 
    repeating same limits to get the plots 
that you see below. 

For bootstraps: Summary Results 
my.summary(t(bt.xt4$the)) 
      mean tr(.1) tr(.2) median  
means 20.01 20.02 20.03  20.04 
s.d.s 0.177 0.132 0.127  0.148 * 
skewns 0.10 -0.02 -0.04  -0.19 
krtsis 0.13  0.02 -0.01   0.39 
low   19.41 19.52 19.56  19.51 
high  20.64 20.48 20.49  20.59 
See s.d.s especially*, then plots 
below, where .1 & esp. .2 trimmed 
means show best recovery of 
‘population’ mean across all reps. 

 
 


