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Did you wash your hands with soap before eating? You’ve undoubtedly
been asked that question a few times in your life. Mom knows that wash-
ing with soap eliminates most of the germs you’ve managed to collect on

your hands. Or does it? A student decided to investigate just how effective washing
with soap is in eliminating bacteria. To do this she tested four different methods—
washing with water only, washing with regular soap, washing with antibacterial
soap (ABS), and spraying hands with antibacterial spray (AS) (containing 65%
ethanol as an active ingredient). Her experiment consisted of one experimental
factor, the washing method, at four levels.

She suspected that the number of bacteria on her hands before washing might
vary considerably from day to day. To help even out the effects of those changes, she
generated random numbers to determine the order of the four treatments. Each
morning she washed her hands according to the treatment randomly chosen. Then
she placed her right hand on a sterile media plate designed to encourage bacteria
growth. She incubated each plate for 2 days at 36°C, after which she counted the bac-
teria colonies. She replicated this procedure 8 times for each of the four treatments.

A side-by-side boxplot of the numbers of colonies seems to show some differ-
ences among the treatments:
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Boxplots of the bacteria colony counts
for the four different washing methods
suggest some differences between treat-
ments. Figure 28.1

WHO Hand washings by four
different methods, as-
signed randomly and
replicated 8 times each

WHAT Number of bacteria
colonies

HOW Sterile media plates
incubated at 36 °C for 2
days



When we first looked at a quantitative variable measured for each of several
groups in Chapter 5, we displayed the data this way with side-by-side box-
plots. And when we compared the boxes, we asked whether the centers
seemed to differ, using the spreads of the boxes to judge the size of the differ-
ences. Now we want to quantify this by asking whether the washing methods
have the same mean bacteria count. We’ll make the same kind of comparison,
comparing the variability among the means with the spreads of the boxes.
It looks like the alcohol spray has lower bacteria counts, but as always, we’re
skeptical. Could it be that the four methods really have the same mean counts
and we just happened to get a difference like this because of natural sampling vari-
ability?

What is the null hypothesis here? It seems natural to start with the hypothesis that
all the group means are equal. That would say it doesn’t matter what method you use to
wash your hands because the mean bacteria count will be the same. We know, how-
ever, that even if there were no differences at all in the means (for example, if some-
one replaced all the solutions with water) there would still be sample-to-sample dif-
ferences. We want to see, statistically, whether differences as large as those observed
in the experiment could naturally occur by chance in groups that have equal means.
If we find that the differences are so large that they would occur only very infre-
quently in such groups, then, as we’ve done with other hypothesis tests, we’ll reject
the null hypothesis and conclude that the group means really are different.1

Are the Means of Several Groups Equal?

We already know how to use a t-test to see whether two groups have equal means.
(If you don’t remember, now is a good time to reread Chapter 24.) But those tests
can’t handle comparing the means of several groups at once. When we stepped
up from comparing two proportions (with a z-test) to comparing several propor-
tions, we found that a new sampling distribution model, the chi-square model,
did the trick. For comparing several means, there is yet another sampling distri-
bution model, called the F-model.

To get an idea of how it works, let’s start by looking at the following two sets of
boxplots:
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It’s hard to see the difference in the means in
these boxplots because the spreads are large
relative to the differences in the means.

Figure 28.2

1 The alternative hypothesis is that “the means are not all equal.” Be careful not to confuse that with “all
the means are different.” With 11 groups we could have 10 means equal to each other and 1 different.
The null hypothesis would still be false.

The PERK Study of
Radial Keratotomy. Surgery on
the eyeball to correct vision has
developed over many years of
research and practice. Here is a
video story of an important
medical trial that helped in this
progress.



We’re trying to decide if the means are different enough for us to reject the null
hypothesis. If they’re close, we’ll attribute the differences to natural sampling
variability. What do you think? It’s easy to see that the means in the second set
differ. It’s hard to imagine that the means could be that far apart just from natural
sampling variability alone. How about the first set? It looks like these observa-
tions could have occurred from treatments with the same means.2 This much vari-
ation among groups does seem consistent with equal group means.

Believe it or not, the two sets of treatment means in both figures are the same.
(They are 31, 36, 38, and 31, respectively.) Then why do the figures look so differ-
ent? In the second figure, the variation within each group is so small that the dif-
ferences between the means stand out. This is what we looked for when we com-
pared boxplots by eye back in Chapter 5. And it’s the central idea of the F-test. We
compare the differences between the means of the groups with the variation within
the groups. When the differences between means are large compared with the vari-
ation within the groups, we reject the null hypothesis and conclude that the means
are (probably) not equal. In the first figure, the differences among the means look
as though they could have arisen just from natural sampling variability from
groups with equal means, so there’s not enough evidence to reject H0.

How can we make this comparison more precise statistically? All the tests
we’ve seen have compared differences of some kind with a ruler based on an esti-
mate of variation. And we’ve always done that by looking at the ratio of the statis-
tic to that variation estimate. Here, the differences among the means will show up
in the numerator, and the ruler we compare them with will be based on the under-
lying standard deviation—that is, on the variability within the treatment groups.

How Different Are They?

The challenge here is that we can’t take a simple difference as we did when com-
paring two groups. In the hand-washing experiment, we have differences in mean
bacteria counts across four treatments. How should we measure how different the
four group means are? With only two groups, we naturally took the difference
between their means as the numerator for the t-test. It’s hard to imagine what else
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2 Of course, with a large enough sample, we can detect any differences that we like. For experiments with
the same sample size, it’s easier to detect the differences when the variation within each box is smaller.
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In contrast with Figure 28.2, the smaller varia-
tion makes it much easier to see the differences
among the group means. Figure 28.3



we could have done. How can we generalize that to more than two groups? When
we’ve wanted to know how different many observations were, we measured how
much they vary, and that’s what we do here.

How much natural variation should we expect among the means if the null hy-
pothesis were true? If the null hypothesis were true, then each of the treatment
means would estimate the same underlying mean. If the washing methods are all
the same, it’s as if we’re just estimating the mean bacteria count on hands that
have been washed with plain water. And we have several (in our experiment,
four) different, independent estimates of this mean. Here comes the clever part.
We can treat these estimated means as if they were observations and simply calcu-
late their (sample) variance. This variance is the measure we’ll use to assess how
different the group means are from each other. It’s the generalization of the differ-
ence between means for only two groups.

The more the group means resemble each other, the smaller this variance will
be. The more they differ (perhaps because the treatments actually have an effect),
the larger this variance will be.

For the bacteria counts, the four means are listed in the table to the left. If you
took those four values, treated them as observations, and found their sample vari-
ance, you’d get 1245.08. Since the four values are means, this number should esti-
mate the variance of a mean. With 8 observations in each group, we know that
variance is . The estimate that we’ve just calculated, 1245.08, should estimate
this quantity. If we want to get back to the variance of the observations, , we need
to multiply it by 8. So 8 3 1245.08 5 9960.64 should estimate .

Of course, remember that when we computed the “sample” variance of these
four means, we had to subtract their mean from each of these four “observations.”
So this estimate of makes sense only if the treatments really do have the same
mean. If they don’t have the same overall mean—as they won’t if the treatment
means really are different—then the variance we just found won’t really make
sense. And in that case, the value we calculated should be larger than . How will
we know? Can we get an independent estimate of for comparison? (Would we
ask, if the answer weren’t “yes”?)

The Ruler Within

We need a suitable ruler for comparison—one based on the underlying variability
in our measurements. That variability is due to the day-to-day differences in the
bacteria count even when the same soap is used. Why would those counts be dif-
ferent? Maybe the experimenter’s hands were not equally dirty, or she washed
less well some days, or the plate incubation conditions varied. We randomized
just so we could see past such things.

We need an independent estimate of , one that doesn’t depend on the null hy-
pothesis being true, one that won’t change if the groups have different means. As
in many quests, the secret is to look “within.” We could look in any of the treat-
ment groups and find its variance. But which one should we use? The answer is,
all of them!

At the start of the experiment (when we randomly assigned experimental units
to treatment groups), the units were drawn randomly from the same pool, so each
treatment group had a sample variance that estimated the same . If the null
hypothesis is true, then not much has happened to the experimental units—or at
least, their means have not moved apart. It’s not much of a stretch to believe that
their variances haven’t moved apart much either. (If the washing methods are
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Why variances? We’ve usu-
ally measured variability with
standard deviations. Standard
deviations have the advan-
tage that they’re in the same
units as the data. Variances
have the advantage that for
independent variables, the
variances add. Because we’re
talking about sums of vari-
ables, we’ll stay with vari-
ances before we get back to
standard deviations.

Level n Mean

Alcohol spray 8 37.5
Antibacterial soap 8 92.5
Soap 8 106.0
Water 8 117.0



equivalent, then the choice of method would not affect the mean or the variabil-
ity.) So each group variance still estimates a common .

As always, to test a null hypothesis model, we first assume that it’s true. If the
group variances are equal, then the common variance they all estimate is just
what we’ve been looking for. Since all the group variances estimate the same ,
we can pool them to get an overall estimate of . Recall that we pooled to esti-
mate variances when we tested the null hypothesis that two proportions were
equal—and for the same reason. It’s also exactly what we did in a pooled t-test.
The variance estimate we get by pooling we’ll denote, as before, by .

For the bacteria counts, the standard deviations and vari-
ances are listed to the left. If we pool the four variances
(here we can just average them because all the sample sizes
are equal), we’d get . In the pooled variance,
each variance is taken around its own treatment mean, so
the pooled estimate doesn’t depend on the treatment means
being equal. But the estimate from before—where we took

the four means as observations and took their variance—does. That estimate gave
9960.64. That seems a lot bigger than 1410.10. Might this be evidence that the four
means are not equal?

Let’s see what we’ve got. We have an estimate of from the variation within
groups of 1410.10. That’s traditionally called the error mean square3 and written
MSE. It’s just the variance of the residuals. Because it’s a pooled variance, we
write it . We’ve got a separate estimate of from the variation between the
groups of 9960.64 (by taking the variance of the four means and multiplying by n).
At least we expect it to estimate if we assume the null hypothesis is true. We call
this quantity the treatment mean square (MST).

The F-statistic

When the null hypothesis is true, the treatment means are equal, and both MSE
and MST estimate . Their ratio, then, should be close to 1.0.

When the null hypothesis is false, the MST will be larger because the treatment
means are not equal. The MSE is a pooled estimate in which the variation within
each group is found around its own group mean, so differing means won’t inflate
it. That makes the ratio MST/MSE suitable for testing the null hypothesis. When
the null hypothesis is true, the ratio should be near 1. If the treatment means re-
ally are different, the numerator will tend to be larger than the denominator, and
the ratio will tend to be bigger than 1.

Of course, even when the null hypothesis is true, the ratio will vary around 1
just due to natural sampling variability. How can we tell when it’s big enough to
reject the null hypothesis? To be able to tell, we need a sampling distribution
model for the ratio. Sir Ronald Fisher found the sampling distribution model of
the ratio in the early 20th century. In his honor we call the distribution of
MST/MSE the F-distribution. And we call the ratio MST/MSE the F-statistic. By
comparing this statistic with the appropriate F-distribution we (or the computer)
can get a P-value.
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Level n Mean Std Dev Variance

Alcohol spray 8 37.5 26.56 705.43
Antibacterial soap 8 92.5 41.96 1760.64
Soap 8 106.0 46.96 2205.24
Water 8 117.0 31.13 969.08

NOTATION ALERT:
Capital F is used only for this distribution
model and statistic. Fortunately, Fisher’s
name didn’t start with a Z, a T, or an R.

3 This terminology stretches back to the early 20th century when these methods were developed. If
you think about it, that’s just what variances are: means of squared differences.



The F-test is simple. It is one-tailed because any differences in the means make
the F-statistic larger. Larger differences in the treatments’ effects lead to the means
being more variable, making the MST bigger. That makes the F-ratio grow. So the
test is significant if the F-ratio is big enough. In practice, we find a P-value, and
big F-statistic values go with small P-values.

The entire analysis is called the Analysis of Variance, commonly abbreviated
ANOVA (and pronounced uh-N -va). You might think that it should be called
the analysis of means, since it’s the equality of the means we’re testing. But we
use the variances within and between the groups for the test.

Like Student’s t-models, the F-models are a family. F-models depend on not
one, but two, degrees of freedom parameters. The degrees of freedom come from
the two variance estimates and are sometimes called the numerator df and the
denominator df. The treatment mean square, MST, is the sample variance of the
observed treatment means. If you think of them as observations, then since there
are k groups, this variance has k 2 1 degrees of freedom. The error mean square,
MSE, is the pooled estimate of the variance within the groups. If there are n obser-
vations in each group, then we get n 2 1 degrees of freedom from each for a total
of k(n 2 1) degrees of freedom.

A simpler way of tracking the degrees of freedom is to start with all the cases.
We’ll call that N. Each group has its own mean, costing us a degree of freedom—k
in all. So we have N 2 k degrees of freedom for the error. When the groups all
have equal sample size, that’s the same as k(n 2 1), but this way works even if the
group sizes differ.

We say that the F-statistic, MST/MSE, has k 2 1 and N 2 k degrees of freedom.

Back to Bacteria!

For the hand-washing experiment, the MST 5 9960.64. The MSE 5 1410.14. If the
treatment means were equal, the treatment mean square should be about the same
size as the error mean square, about 1410. But it’s 9960.64, which is 7.06 times big-
ger. In other words, F 5 7.06. This F-statistic has (4 2 1) 5 3 and 32 2 4 5 28 de-
grees of freedom.

An F-value of 7.06 is bigger than 1, but we can’t tell for sure whether it’s big
enough to reject the null hypothesis until we check the F3,28 model to find its P-
value. (Usually, that’s most easily done with technology, but we can use printed
tables.) It turns out the P-value is 0.0011. In other words, if the treatment means
were actually equal, we would expect the ratio MST/MSE to be 7.06 or larger
about 11 times out of 10,000, just from natural sampling variability. That’s not
very likely, so we reject the null hypothesis and conclude that the means are dif-
ferent. We have strong evidence that the four different methods of hand washing
are not equally effective at eliminating germs.

The ANOVA Table

You’ll often see the mean squares and other information put into a table called
the ANOVA table. Here’s the table for the soaps: 

Analysis of Variance Table
Source Sum of Squares DF Mean Square F-ratio P-value

Soaps 29882 3 9960.64 7.0636 0.0011
Error 39484 28 1410.14
Total 69366 31

O
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NOTATION ALERT:
What, first little n and now big N? In an
experiment it’s standard to use N for all
the cases and n for the number in each
treatment group.

Animated Means
Illustrate F-Tests. How does the
F-test really work? This interactive
activity lets you adjust the means
of different groups to immediately
see the effect on the F-statistic.

A Simple ANOVA. There
always seem to be lots of numbers
in the ANOVA table, but they’re
really very organized. Take an
animated tour of the ANOVA table.



This table has a long tradition stretching back to when ANOVA calculations
were done by hand. Major research labs had rooms full of mechanical calculators
operated by women. (Yes, always women; women were thought—by the men in
charge, at least—to be more careful at such an exacting task.) Three women would
perform each calculation, and if any two of them agreed on the answer, it was
taken as the correct value.

The ANOVA table was originally designed to hold the intermediate calcula-
tions so they could easily be repeated. We don’t need to look at the Sum of
Squares column, nor really at the Mean Square column. (It may be of interest that
the mean squares are just the sum of squares divided by their respective degrees
of freedom.) The F-ratio and the square root of the MSE are the important quantities.
You’ll almost always see ANOVA results presented in a table like this, though. Af-
ter nearly a century of writing the table this way, statisticians (and their technol-
ogy) aren’t going to change. Even though the table was designed to facilitate hand
calculation, computer programs that compute ANOVAs still present the results in
this form. Usually the P-value is found next to the F-ratio itself.4

Total? The ANOVA table includes a final line labeled “Total.” It’s easy to see that the total
sum of squares is just the sum of the treatment and error SSs. You don’t even need your
calculator to see that the degrees of freedom add up. There is a surprise here, though. If
you divide the total SS by its degrees of freedom, you get the variance of all the responses.
(Of course, the square root of that is the response standard deviation.) Bet you didn’t see
that coming. You can prove that this always works out this way with a bit of algebra, but it
doesn’t really matter for our analyses, so we won’t bother. When ANOVAs were found by
hand, however, this was an important check on the calculations.

You’ll sometimes see the two mean squares referred to as the mean square be-
tween and the mean square within—especially when we test data from observa-
tional studies rather than experiments. ANOVA is often used for such observa-
tional data, and as long as certain conditions are satisfied, there’s no problem with
using it in that context.

The F-table

Usually, you’ll get the P-value for the F-statistic from technology. Any software
program performing an ANOVA will automatically “look up” the appropriate
one-sided P-value for the F-statistic. If you want to do it yourself, you’ll need an
F-table. (There’s one on the CD called Table F.) F-tables are usually printed only
for a few values of a, often 0.05, 0.01, and 0.001. They give the critical value of the
F-statistic with the appropriate number of degrees of freedom determined by
your data, for the a-level that you select. If your F-statistic is greater than that
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4 The P-value column may be labeled with a title such as “Prob > F,” “sig,” or “Prob.” Don’t let that con-
fuse you. It’s just the P-value.



value, you know that its P-value is less than that a level. So, you’ll be able to tell
whether the P-value is greater or less than 0.05, 0.01, or 0.001, but to be more pre-
cise, you’ll need technology (or an interactive table like the one in ActivStats).

Here’s an excerpt from an F-table for a 5 0.05:
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3.403 3.009 2.776 2.621 2.508 2.423

3.385 2.991 2.759 2.603 2.490 2.405

3.369 2.975 2.743 2.587 2.474 2.388
3.354 2.960 2.728 2.572 2.459 2.373

3.340 2.947 2.714 2.558 2.445 2.359
3.328 2.934 2.701 2.545 2.432 2.346

3.316 2.922 2.690 2.534 2.421 2.334
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2.947

0.05

32

Part of an F-table showing critical
values for a 5 0.05 and highlighting
the critical value, 2.947, for 3 and 28
degrees of freedom. We can see that
only 5% of the values will be
greater than 2.947 with this combi-
nation of degrees of freedom.

Figure 28.4

Notice that the critical value for 3 and 28 degrees of freedom at a 5 0.05 is 2.947.
Since our F-statistic of 7.06 is larger than this critical value, we know that the P-
value is less than 0.05. We could also look up the critical value for a 5 0.01 and
find that it’s 4.568 and the critical value for a 5 0.001 is 7.193. So our F-statistic sits
between the two critical values 0.01 and 0.0001, and our P-value is slightly greater
than 0.001. Technology can find the value precisely. It turns out to be 0.011.

The ANOVA Model

We can write a simple model that describes the data with the components that we
need to find the Analysis of Variance. Each observation can be found as the sum
of two quantities: the mean of its treatment group, and a leftover residual.

We can write the i-th observation in the k-th group as

where is the mean of the k-th group, and is the “error” or residual for the i-th
observation in group k: .

The MSE is the variance of the errors. The MST comes from the variance of the
group means.

As we did with regression, we can think of this as a model that gives a fitted or
predicted value for each observation as

That is, we predict that each observation will be like its group mean—a reason-
able, if somewhat simplistic, prediction. (The more complicated experimental
designs we saw in Chapter 13 lead to more complicated ANOVA models and
more complex tests. Those are beyond the scope of this book and, in fact, can
easily fill entire courses.)

Finally, as always before we do inference, we must imagine the underlying
“true” model for these data. Here, that’s pretty easy. We don’t even need new

ŷik 5 yk.

eik 5 yik 2 yk

eikyk

yik 5 yk 1 eik

The F-Tables. View and
interact with an animated explo-
ration of the F-tables. On ActivStats
you can watch the shape of the
F-distribution change as you drag
your mouse across and down the
degrees of freedom. That’s hard to
see any other way.



Greek letters because we’re just dealing with means. We write the underlying
model as

That is, we can think of each response value as being like the underlying mean of
its group plus a unique error. Thinking about the ANOVA model gives us predicted
values and residuals. Those are helpful when we check assumptions and conditions.

Back to Standard Deviations

We’ve been using the variances because they’re easier to work with. But when it’s
time to think about the data, we’d really rather have a standard deviation because
it’s in the units of the response variable. The natural standard deviation to think
about is the standard deviation of the residuals.

The variance of the residuals is staring us in the face. It’s the MSE. All we have
to do to get the residual standard deviation is take the square root of MSE:

The p subscript is to remind us that this is a pooled standard deviation, combin-
ing residuals across all k groups. The denominator in the fraction shows that each
of the k groups cost us a degree of freedom.

This standard deviation should “feel” right. That is, it should reflect the kind of
variation you expect to find in any of the experimental groups. For the hand-
washing data, bacteria colonies. Looking back at the box-
plots of the groups, we see that 37.6 seems to be a reasonable compromise stan-
dard deviation for all four groups.

Assumptions and Conditions

When we checked assumptions and conditions for regression we had to take care
to perform our checks in order. Here we have a similar concern. For regression we
found that displays of the residuals were often a good way to check the corre-
sponding conditions. That’s true for ANOVA as well.

Plot the Data . . .

Just as you would never find a linear regression without looking at the scatterplot
of y vs. x, you should never embark on an ANOVA without first examining side-
by-side boxplots of the data comparing the responses for all of the groups. You al-
ready know what to look for—we talked about that back in Chapter 5. Check for
outliers within any of the groups and correct them if there are errors in the data.
Get an idea of whether the groups have similar spreads (as we’ll need) and
whether the centers seem to be alike (as the null hypothesis claims) or different. If
the individual boxplots are all skewed in the same direction, you should consider
re-expressing the response variable to make them more symmetric. Doing so is
likely to make the analysis more powerful and more correct.

sp 5 21410.14 5 37.6

sp 5 2MSE 5 Å �e2

sN 2 kd
.

yik 5 mk 1 eik.
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Don’t ever carry out an Analysis of Variance without looking at the side-by-side
boxplots first. The chance of missing an important pattern or violation is just too
great.

Independence Assumptions

The groups must be independent of each other. No test can verify this assump-
tion. You have to think about how the data were collected. The assumption would
be violated, for example, if we measured subjects’ performance before some treat-
ment, again in the middle of the treatment period, and then again at the end.5

The data within each treatment group must be independent as well. The data
must be drawn independently and at random from a homogeneous population,
or generated by a randomized comparative experiment.

We check the Randomization Condition: Were the data collected with suitable
randomization? For surveys, are the data drawn from each group a representative
random sample of that group? For experiments, were the treatments assigned to
the experimental units at random?

We were told that the hand-washing experiment was randomized.

Equal Variance Assumption

The ANOVA requires that the variances of the treatment groups be equal. After
all, we need to find a pooled variance for the MSE. To check this assumption, we
can check that the groups have similar variances:

Similar Variance Condition: There are some ways to see whether the variation
in the treatment groups seems roughly equal:

• Look at side-by-side boxplots of the groups to see whether they have roughly
the same spread. It can be easier to compare spreads across groups when they
have the same center, so consider making side-by-side boxplots of the residu-
als. If the groups have differing spreads, it can make the pooled variance—the
MSE—larger, reducing the F-statistic value and making it less likely that we can
reject the null hypothesis. So the ANOVA will usually fail on the “safe side,” re-
jecting H0 less often than it should. Because of this, we usually require the
spreads to be quite different from each other before we become concerned
about the condition failing. If you’ve rejected the null hypothesis, this is espe-
cially true.

• Look at the original boxplots of the response values again. In general, do the
spreads seem to change systematically with the centers? One common pattern is
for the boxes with bigger centers to have bigger spreads. This kind of system-
atic trend in the variances is more of a problem than random differences in
spread among the groups and should not be ignored. Fortunately, such system-
atic violations are often helped by re-expressing the data. (If, in addition to
spreads that grow with the centers, the boxplots are skewed with the longer tail
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5 There is a modification of ANOVA, called repeated measures ANOVA, that deals with such data. (If
the design reminds you of a paired-t situation, you’re on the right track, and the lack of independence is
the same kind of issue we discussed in Chapter 25.)



stretching off to the high end, then the data are pleading for a re-expression.
Try taking logs of the dependent variable for a start. You’ll likely end up with a
much cleaner analysis.)

• Look at the residuals plotted against the predicted values. Often, larger pre-
dicted values lead to larger magnitude residuals. This is another sign that the
condition is violated. (This may remind you of the Does the Plot Thicken? Con-
dition of regression. And it should.) When the plot thickens (to one side or the
other), it’s usually a good idea to consider re-expressing the response variable.
Such a systematic change in the spread is a more serious violation of the equal
variance assumption than slight variations of the spreads across groups.

Let’s check the conditions for the hand-washing data. Here’s a boxplot of resid-
uals by group and residuals by predicted value:

Neither plot shows a violation of the condition. The IQRs (the box heights) are
quite similar and the plot of residuals vs. predicted values does not show a pro-
nounced widening to one end. The pooled estimate of 37.6 colonies for the error
standard deviation seems reasonable for all four groups.
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Boxplots of residuals for the four
washing methods and a plot of
residuals vs. predicted values.
There’s no evidence of a systematic
change in variance from one group
to the other or by predicted value.

Figure 28.5

Normal Population Assumption

Like Student’s t-tests, the F-test requires the underlying errors to follow a Normal
model. As before when we’ve faced this assumption, we’ll check a corresponding
Nearly Normal Condition.

Technically, we need to assume that the Normal model is reasonable for the
populations underlying each treatment group. We can (and should) look at the
side-by-side boxplots for indications of skewness. Certainly, if they are all (or
mostly) skewed in the same direction, the Nearly Normal Condition fails (and re-
expression is likely to help).

In experiments, we often work with fairly small groups for each treatment, and
it’s nearly impossible to assess whether the distribution of only six or eight num-
bers is Normal (though sometimes it’s so skewed or has such an extreme outlier
that we can see that it’s not). Here we are saved by the Equal Variance Assumption
(which we’ve already checked). The residuals have their group means subtracted,
so the mean residual for each group is 0. If their variances are equal, we can group
all the residuals together for the purpose of checking the Nearly Normal Condition.



Check Normality with a histogram or a Normal probability plot of all the resid-
uals together. The hand-washing residuals look nearly Normal in the Normal
probability plot, although, as the boxplots showed, there’s a possible outlier in the
Soap group.

Because we really care about the Normal model within each group, the Normal
population assumption is violated if there are outliers in any of the groups. Check
for outliers in the boxplots of the values for each treatment group. The Soap group
of the hand-washing data shows an outlier, so we might want to compute the
analysis again without that observation. (For these data, it turns out to make little
difference.)

One-Way ANOVA F-test We test the null hypothesis 
against the alternative that the group means are not all equal. We test the hypothesis with
the F-statistic, , where is the treatment mean square found from the vari-
ance of the means of the treatment groups and is the error mean square, found by
pooling the variances within each of the treatment groups. If the F-statistic is large
enough, we reject the null hypothesis.

Analysis of Variance

In Chapter 5 we looked at side-by-side boxplots of four different containers for holding hot bever-
ages. The experimenter wanted to know which type of container would keep his hot beverages
hot longest. To test it, he heated water to a temperature of 180°F, placed it in the container, and
then measured the temperature of the water again 30 minutes later. He randomized the order of
the trials and tested each container 8 times. His response variable was the difference in tempera-
ture (in °F) between the initial water temperature and the temperature after 30 minutes. Let’s test
whether these containers really perform differently.

MSE

MSTF 5
MST

MSE

H0: m1 5 m2 5 c 5 mk
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The hand-washing residuals look
nearly Normal in this Normal prob-
ability plot. Figure 28.6

I want to know whether there is any difference among the
four containers in their ability to maintain the temperature
of a hot liquid for 30 minutes. Writing mk for the mean tem-
perature difference for container k, then my null hypothesis
is that these means are all the same:

H0: m1 = m2 = m3 = m4.
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Plot Plot the side-by-side box-
plots of the data.

Hypotheses State what you want
to know and the null hypothesis
we wish to test. For ANOVA, the
null hypothesis is that all the treat-
ment groups have the same mean.
The alternative is that at least one
mean is different.
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The alternative is that the group means are not all equal.

✔ Randomization Condition: The experimenter performed the
trials in random order.

✔ Similar Variance Condition: The Nissan mug variation
seems to be a bit smaller than the others. (I could also
look later at the plot of residuals vs. predicted values to
see if the plot thickens.)

Analysis of Variance
Sum of 

Source DF Squares Mean F-ratio P-value
Container 3 714.1875 238.063 10.713 ,0.0001

Error 28 622.1875 22.221

Total 31 1336.3750

✔ Nearly Normal Condition: The Normal probability plot is
not very straight, but there are no outliers. The histogram
confirms that the data are skewed to the right, not
symmetric.

The histogram shows that the distribution of the residuals
is skewed to the right:

Looking at the table of means and SDs on the next page, I
can see that the standard deviations grow along with the
means. Possibly a re-expression of the data would improve
matters.

Under these circumstances, I cautiously find the P-value
for the F-statistic from the F-model with 3 and 28
degrees of freedom.
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Model Check the appropriate
conditions.

Fit the ANOVA model.



The Balancing Act

The two examples we’ve looked at so far share a special feature. Each treatment
group has the same number of experimental units. For the hand-washing experi-
ment, each washing method was tested 8 times. For the cups, there were also 8 tri-
als for each cup. This feature (the equal numbers of cases in each group, not the
number 8) is called balance, and experiments that have equal numbers of experi-
mental units in each treatment are said to be balanced or to have balanced designs.

As usual, we give nice-sounding names like “regular,” “simple,” and “bal-
anced” to things we like or hope to see. Balanced designs are a bit easier to ana-
lyze because the calculations are simpler. Usually, we try for balanced designs.
But in the real world we often encounter unbalanced data. Participants drop out
or become unsuitable, plants die, or maybe we just can’t find enough experimen-
tal units to fit a particular criterion.

Everything we’ve done so far works just fine for unbalanced designs except
that the calculations get a bit more complicated. Where once we could write n for
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From the ANOVA table, the error mean square, MSE, is
22.22, which means that the standard deviation of all the
errors is estimated to be degrees.

This seems like a reasonable value for the error standard
deviation in the four treatments (with the possible excep-
tion of the Nissan mug).

Level n Mean Std Dev

CUPPS 8 10.1875 5.20259
Nissan 8 2.7500 2.50713
SIGG 8 16.0625 5.90059
Starbucks 8 10.2500 4.55129

The ratio of the mean squares gives an F-ratio of 10.7134
with a P-value <0.0001.

An F-ratio this large would be very unlikely if the containers
all had the same mean temperature difference.

Conclusions: Even though some of the conditions are mildly
violated, I am fairly confident that the means are not all
equal. (I would have been more worried about the changing
variance if I had failed to reject H0.) More specific conclu-
sions might require a re-expression of the data.

222.22 5 4.71

Mechanics Show the table of
means.

Conclusion Interpret the F-test.

State your conclusion in the proper
context.



the number of experimental units in a treatment, now we have to write nk and
sum more carefully. Where once we could pool variances with a simple average,
now we have to adjust for the different n’s. Technology clears these hurdles easily,
so you’re safe thinking about the analysis in terms of the simpler balanced formu-
las and trusting that the technology will make the necessary adjustments.

Comparing Means

When we reject H0, it’s natural to ask which means are different. No one would be
happy with an experiment to test 10 cancer treatments that concluded only with
“We can reject H0—the treatments are different!” We’d like to know more, but the
F-statistic doesn’t offer that information.

What can we do? If we can’t reject the null, we’ve got to stop. There’s no point
in further testing. If we’ve rejected the simple null hypothesis, however, we can do
more. In particular, we can test whether any pairs or combinations of group
means differ. For example, we might want to compare treatments against a con-
trol or a placebo, or against the current standard treatment.

In the hand-washing experiment, we could consider plain water to be a control.
Nobody would be impressed with (or want to pay for) a soap that did no better
than water alone. A test of whether the antibacterial soap (for example) was dif-
ferent from plain water would be a simple test of the difference between two
group means. To be able to perform an ANOVA, we first check the Similar Vari-
ance Condition. If things look OK we assume that the variances are equal. If the
variances are equal then a pooled t-test is appropriate. Even better (this is the spe-
cial part), we already have a pooled estimate of the standard deviation based on
all of the tested washing methods. That’s , which, for the hand-washing experi-
ment, was equal to 37.55 bacteria colonies.

The null hypothesis is that there is no difference between water and the antibac-
terial soap. As we did in Chapter 24, we’ll write that as a hypothesis about the dif-
ference in the means:

The alternative is

.

The natural test statistic is , and the (pooled) standard error is 

The difference in the observed means is 117.0 2 92.5 5 24.5
colonies. The standard error comes out to 18.775. The t-statistic, 
then, is . To find the P-value we consult the Student’s

t-distribution on N 2 k 5 32 2 4 5 28 degrees of freedom. The P-
value is about 0.1—not small enough to impress us. So we can’t
discern a significant difference between washing with the antibac-
terial soap and just using water.

Our t-test asks about a simple difference. We could also ask a more complicated
question about groups of differences. Does the average of the two soaps differ

t 5
24.5
18.75 5 1.31

SEsmW 2 mABSd 5 sp# 1
nW

1
1

nABS
.

yW 2 yABS

HA: mW 2 mABS 2 0

H0: mW 2 mABS 5 0.

sp
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Level n Mean Std Dev

Alcohol spray 8 37.5 26.56
Antibacterial soap 8 92.5 41.96
Soap 8 106.0 46.96
Water 8 117.0 31.13

Boxplots and ANOVA.
How should we understand how
the group means differ? Make a
picture. This activity discusses and
illustrates what to do.



from the average of three sprays, for example? Complex combinations like these
are called contrasts. Finding the standard errors for contrasts is straightforward,
but beyond the scope of this book. We’ll restrict our attention to the common
question of comparing pairs of treatments after H0 has been rejected. 

*Bonferroni Multiple Comparisons

Our hand-washing experimenter was pretty sure that alcohol would kill the
germs even before she started the experiment. But alcohol dries the skin and
leaves an unpleasant smell. She was hoping that one of the antibacterial soaps
would work as well as alcohol so she could use that instead. That means she re-
ally wanted to compare each of the other treatments against the alcohol spray. We
know how to compare two of the means with a t-test. But now we want to do sev-
eral tests, and each test poses the risk of a Type I error. As we do more and more
tests, the risk that we might make a Type I error grows bigger than the a level of
each individual test. With each additional test, the risk of making an error grows.
If we do enough tests, we’re almost sure to reject one of the null hypotheses by
mistake—and we’ll never know which one.

There is a defense against this problem. In fact, there are several defenses. As a
class, they are called methods for multiple comparisons. All multiple compar-
isons methods require that we first be able to reject the overall null hypothesis
with the ANOVA’s F-test. Once we’ve rejected the overall null, then we can think
about comparing several—or even all—pairs of group means.

Let’s look again at our test of the water treatment against the antibacterial soap
treatment. This time we’ll look at a confidence interval instead of the pooled t-
test. We did a test at significance level a 5 0.05. The corresponding confidence
level is 1 2 a 5 95%. For any pair of means, a confidence interval for their differ-
ence is , where the margin of error is

As we did in the previous section, we get as the pooled standard deviation
found from all the groups in our analysis. We find the critical value t* from the
Student’s t-model corresponding to the specified confidence level found with N 2 k
degrees of freedom, and the nk’s are the number of experimental units in each of
the treatments.

To reject the null hypothesis that the two group means are equal, the difference
between them must be larger than the ME. That way 0 won’t be in the confidence
interval for the difference. When we use it in this way, we call the margin of error
the least significant difference (LSD for short). If two group means differ by
more than this amount, then they are significantly different at level a for each indi-
vidual test.

For our hand-washing experiment, each group has n 5 8, and sp 5 37.55
colonies. From technology or Table T, we can find that t* with 28 df (for a 95% con-
fidence interval) is 2.048. So

LSD 5 2.048 3 37.55 3 Å1
8

1
1
8

5 38.45 colonies,

sp

ME 5 t* 3 spÅ 1
n1

1
1
n2

.

sy1 2 y2d 6 ME
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and we could use this margin of error to make a 95% confidence interval for any
difference between group means. Any two washing methods whose means differ
by more than 38.45 colonies could be said to differ at a 5 0.05 by this method.

Of course, we’re still just examining individual pairs. If we want to examine
many pairs simultaneously, there are several methods that adjust the critical 
t*-value so that the resulting confidence intervals provide appropriate tests for all
the pairs. And, in spite of making many such intervals, the overall Type I error rate
stays at (or below) a.

One such method is called the Bonferroni method. This method adjusts the
LSD to allow for making many comparisons. The result is a wider margin of error
called the minimum significant difference, or MSD. The MSD is found by
replacing t* with a slightly larger number. That makes the confidence intervals
wider for each contrast and the corresponding Type I error rates lower for each
test. And it keeps the overall Type I error rate at or below a.

The Bonferroni method distributes the error rate equally among the confidence
intervals. It divides the error rate among J confidence intervals, finding each inter-
val at confidence level instead of the original 1 2 a. To signal this adjustment,
we label the critical value t** rather than t*. For example, to make the three confi-
dence intervals comparing the alcohol spray with the other three washing meth-
ods, and preserve our overall a risk at 5%, we’d construct each with a confidence
level of

The only problem with this is that t-tables don’t have a column for 98.33% con-
fidence (or, correspondingly, for a 5 0.01667). Fortunately, technology has no such
constraints.6 For the hand-washing data, if we want to examine the three confi-
dence intervals comparing each of the other methods with the alcohol spray, the
t**-value (on 28 degrees of freedom) turns out to be 2.546. That’s somewhat larger
than the individual t*-value of 2.048 that we would have used for a single confi-
dence interval. And the corresponding ME is 47.80 colonies (rather than 38.45 for
a single comparison). The larger critical value along with correspondingly wider
intervals is the price we pay for making multiple comparisons.

Many statistics packages assume that you’d like to compare all pairs of means.
Some will display the result of these comparisons in a table like this:

1 2
0.05

3
5 1 2 0.01667 5 0.98333

1 2
a
J
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Level n Mean Groups

Alcohol spray 8 37.5 A
Antibacterial soap 8 92.5 B
Soap 8 106.0 B
Water 8 117.0 B

This table shows that the alcohol spray is in a class by itself and that the other
three hand-washing methods are indistinguishable from one another.

6 The electronic t-tables provided on the CD-ROM in ActivStats let you add new columns to the t-table
at any alpha level, so you can do the Bonferroni calculation easily.

Carlo Bonferroni (1892–1960)
was a mathematician who
taught in Florence. He wrote
two papers in 1935 and 1936
setting forth the mathematics
behind the method that bears
his name.



ANOVA on Observational Data

So far we’ve applied ANOVA only to data from designed experiments. That’s nat-
ural for several reasons. The primary one is that, as we saw in Chapter 13, ran-
domized comparative experiments are specifically designed to compare the results
for different treatments. The overall null hypothesis, and the subsequent tests on
pairs of treatments in ANOVA, address such comparisons directly. In addition, as
we discussed earlier, the Equal Variance Assumption (which we need for all of the
ANOVA analyses) is often plausible in a randomized experiment because the
treatment groups start out with sample variances that all estimate the same un-
derlying variance of the collection of experimental units.

Sometimes, though, we just can’t perform an experiment. When ANOVA is used
to test equality of group means from observational data, there’s no a priori reason to
think the group variances might be equal at all. Even if the null hypothesis of equal
means were true, the groups might easily have different variances. But if the side-by-
side boxplots of responses for each group show roughly equal spreads and symmet-
ric, outlier-free distributions, you can use ANOVA on observational data.

Observational data tend to be messier than experimental data. They are much
more likely to be unbalanced. If you aren’t assigning subjects to treatment groups,
it’s harder to guarantee the same number of subjects in each group. And because
you are not controlling conditions as you would in an experiment, things tend to
be, well, less controlled. The only way we know to avoid the effects of possible
lurking variables is with control and randomized assignment to treatment
groups, and for observational data, we have neither.

ANOVA is often applied to observational data when an experiment would be
impossible or unethical. (We can’t randomly break some subjects’ legs, but we can
compare pain perception among those with broken legs, those with sprained an-
kles, and those with stubbed toes by collecting data on subjects who have already
suffered those injuries.) In such data, subjects are already in groups, but not by
random assignment.

Be careful; if you have not assigned subjects to treatments randomly, you can’t
draw causal conclusions even when the F-test is significant. You have no way to
control for lurking variables or confounding, so you can’t be sure whether any
differences you see among groups are due to the grouping variable or to some
other unobserved variable that may be related to the grouping variable.

Because observational studies often are intended to estimate parameters, there is
a temptation to use pooled confidence intervals for the group means for this pur-
pose. Although these confidence intervals are statistically correct, be sure to think
carefully about the population that the inference is about. The relatively few sub-
jects that you happen to have in a group may not be a simple random sample of
any interesting population, so their “true” mean may have only limited meaning.

One More Example

Here’s an example that exhibits many of the features we’ve been discussing. It gives a fair idea of
the kinds of challenges often raised by real data.

A study at a liberal arts college attempted to find out who watches more TV at college: men or
women? Varsity athletes or non-athletes? Student researchers asked 200 randomly selected students
questions about their backgrounds and about their television-viewing habits. The researchers
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found that men watch, on average, about 2.5 hours per week more TV than women, and that var-
sity athletes watch about 3.5 hours per week more than those who are not varsity athletes. But is
this the whole story? To investigate further, they divided the students into four groups: male ath-
letes (MA), male non-athletes (MNA), female athletes (FA), and female non-athletes (FNA). Let’s
do the ANOVA step-by-step.
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I have the number of hours spent watching TV in a week for
200 randomly selected students. I know their sex and
whether they are varsity athletes or not. I wonder whether
TV watching differs according to sex and athletic status.

Here are the side-by-side boxplots of the data:

This plot suggests problems with the data. Each box shows
a distribution skewed to the high end, and outliers pepper
the display, including some extreme outliers. The box with
the highest center (MA) also has the largest spread.
These data just don’t pass the first screening for suitabil-
ity. This sort of pattern calls for a re-expression.

Here are the boxplots for the square root of TV hours.

The spreads in the four groups are now more similar and
the individual distributions more symmetric. And now there
are no outliers.

✔ Randomization Condition: The data come from a ran-
dom sample of students.

✔ Similar Variance Condition: The boxplots show similar
spreads. (I could also check the residuals later.)
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Plan Name the variables, report
the W’s, and specify the questions
of interest.

Make a picture. Always start an
ANOVA with side-by-side box-
plots of the responses in each of
the groups. Always.

These data offer a good example
why.

The responses are counts—num-
bers of TV hours. You may recall
from Chapter 10 that a good re-
expression to try first for counts is
the square root.

Model  and Mechanics Check
the appropriate conditions.



*So Do Male Athletes Watch More TV?

Here’s a Bonferroni comparison of all pairs of groups:
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The ANOVA table looks like this:
Sum of Mean

Source DF Squares Square F-ratio P-value
Group 3 47.24733 15.7491 12.8111 <0.0001

Error 193 237.26114 1.2293

Total 196 284.50847

✔ Nearly Normal Condition: A histogram of the residuals
looks reasonably Normal:

Interestingly, the few cases that seem to stick out on the
low end are male athletes who watched no TV, making them
different from all the other male athletes.

Under these conditions, it’s appropriate to use Analysis of
Variance.

The F-statistic is large and the corresponding P-value
small. I am confident that the TV-watching behavior is not
the same among these groups.

60
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Fit The ANOVA model.

Conclusion Interpret the results in
the proper context.

In case you were 
wondering . . . The standard
errors are different because
this isn’t a balanced design.
Differing numbers of experi-
mental units in the groups
generate differing standard
errors.

Difference Std. Err. P-Value

FA–FNA 0.049 0.270 0.9999
MNA–FNA 0.205 0.182 0.8383
MNA–FA 0.156 0.268 0.9929
MA–FNA 1.497 0.250 ,0.0001
MA–FA 1.449 0.318 ,0.0001
MA–MNA 1.292 0.248 ,0.0001



Three of the differences are very significant. It seems that among women there’s
little difference in TV watching between varsity athletes and others. Among men,
though, the corresponding difference is large. And among varsity athletes, men
watch significantly more TV than women.

But wait. How far can we extend the inference that male athletes watch more
TV than other groups? The data came from a random sample of students made
during the week of March 21. If the students carried out the survey correctly using
a simple random sample, we should be able to make the inference that the gener-
alization is true for the entire student body during that week.

Is it true for other colleges? Is it true throughout the year? The students con-
ducting the survey followed up the survey by collecting anecdotal information
about TV watching of male athletes. It turned out that during the week of the
survey, the NCAA men’s basketball tournament was televised. This could explain
the increase in TV watching for the male athletes. It could be that the increase
extends to other students at other times, but we don’t know that. Always be
cautious in drawing conclusions too broadly. Don’t generalize from one popula-
tion to another.

What Can Go Wrong? ● Watch out for outliers. One outlier in a group can change both the mean
and the spread of that group. It will also inflate the error mean square,
which can influence the F-test. The good news is that ANOVA fails on the
safe side by losing power when there are outliers. That is, you are less likely
to reject the overall null hypothesis if you have (and leave) outliers in your
data. But they are not likely to cause you to make a Type I error.

● Watch out for changing variances. The conclusions of the ANOVA de-
pend crucially on the assumptions of independence and constant variance,
and (somewhat less seriously as n increases) on Normality. If the conditions
on the residuals are violated, it may be necessary to re-express the response
variable to approximate these conditions more closely. ANOVA benefits
so greatly from a judiciously chosen re-expression that the choice of a re-
expression might be considered a standard part of the analysis.

● Be wary of drawing conclusions about causality from observational
studies. ANOVA is often applied to data from randomized experiments for
which causal conclusions are appropriate. If the data are not from a de-
signed experiment, however, the Analysis of Variance provides no more evi-
dence for causality than any other method we have studied. Don’t get into
the habit of assuming that ANOVA results have causal interpretations.

● Be wary of generalizing to situations other than the one at hand. Think
hard about how the data were generated to understand the breadth of con-
clusions you are entitled to draw.

● Watch for multiple comparisons. When rejecting the null hypothesis, you
can conclude that the means are not all equal. But you can’t start comparing
every pair of treatments in your study with a t-test. You’ll run the risk of in-
flating your Type I error rate. Use a multiple comparisons method when you
want to test many pairs.
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We first learned about side-by-side boxplots in Chapter 5. There we made general statements about
the shape, center, and spread of each group. When we compared groups, we asked whether their
centers looked different compared with how spread out the distributions were. Now we’ve made
that kind of thinking precise. We’ve added confidence intervals for the difference and tests of
whether the means are the same.

We pooled data to find a standard deviation when we tested the hypothesis of equal proportions.
For that test, the assumption of equal variances was a consequence of the null hypothesis that the
proportions were equal, so it didn’t require an extra assumption. Means don’t have a linkage with
their corresponding variances, so to use pooled methods we must make the additional assumption
of equal variances. But in a randomized experiment, that’s a plausible assumption.

Chapter 13 offered a variety of designs for randomized comparative experiments. Each of those
designs can be analyzed with a variant or extension of the ANOVA methods discussed in this chap-
ter. Entire books and courses deal with these extensions, but all follow the same fundamental ideas
presented here.

ANOVA is closely related to the regression analyses we saw in Chapter 27. (In fact, most statistics
packages offer an ANOVA table as part of their regression output.) The assumptions are similar—
and for good reason. The analyses are, in fact, related at a deep conceptual (and computational)
level, but those details are beyond the scope of this book.

The pooled two-sample t-test for means is a special case of the ANOVA F-test. If you perform an
ANOVA comparing only two groups, you’ll find that the P-value of the F-statistic is exactly the
same as the P-value of the corresponding pooled t-statistic. That’s because in this special case the F-
statistic is just the square of the t-statistic. The F-test is more general. It can test the hypothesis that
several group means are equal.

C O N N E C T I O N S

What have we learned?

We’ve learned how to compare the means of more than two independent groups based on
samples drawn from those groups.

We’ve learned that using a t-test to test the equality of each pair of groups means would lead
to a higher Type I error rate than we want. We can correct for that by lowering the alpha level of
each test by using a Bonferroni correction.

We’ve learned that we can also test the hypothesis that all the means are equal using the
Analysis of Variance (ANOVA). The main idea is to compare overall differences between the
treatment means with the variation within each group. If the null hypothesis of equal means is
true, the ratio we form will follow an F-distribution. But if that ratio is large compared with the
F-distribution, that provides evidence against the null hypothesis.

We’ve learned that ANOVA has assumptions and conditions that need to be checked before we
infer anything from the F-ratio:
● The data values must be independent (think about how they were collected).
● The spread within each group must be equal (check the side-by-side boxplots and a

plot of residuals against predicted values).
● The errors must be Normal (check a histogram or Normal probability plot of the

residuals).



We’ve learned that when these conditions are satisfied, we can be confident in our inference
from the F-test. A large F-ratio gives a small P-value and provides evidence against the null hy-
pothesis of equal means. If we do reject the null hypothesis, then we need to use multiple com-
parisons methods to determine which means are different.
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T E R M S
Error mean square The error mean square (MSE) is the estimate of the error variance obtained by pooling the

(MSE) variances of each treatment group. The square root of the MSE is the estimate of the error stan-
dard deviation, sp.

Treatment mean square The treatment mean square (MST) is the estimate of the error variance under the assumption
(MST) that the treatment means are all equal. If the (Null) Assumption is not true, the MST will be

larger than the error variance.

F-distribution The F-distribution is the sampling distribution of the F-statistic when the null hypothesis that
the treatment means are equal is true. It has two degrees of freedom, one for the numerator, 
(k 2 1), and one for the denominator, N 2 k, where N is the total number of observations and k
is the number of groups.

F-statistic The F-statistic is the ratio MST/MSE. When the F-statistic is sufficiently large, we reject the null
hypothesis that the group means are equal.

F-test The F-test tests the null hypothesis that all the group means are equal against the one-sided
alternative that they are not all equal. We reject the hypothesis of equal means if the F-statistic
exceeds the critical value from the F-distribution corresponding to the specified significance
level and degrees of freedom.

ANOVA An analysis method for testing equality of means across treatment groups.

ANOVA table The ANOVA table is convenient for showing the degrees of freedom, the treatment mean
square, the error mean square, their ratio, the F-statistic, and its P-value. There are usually
other quantities of lesser interest included as well.

ANOVA model The model for a one-way (one response, one factor) ANOVA is

Estimating with gives predicted values and residuals .

Assumptions for ● Independence Assumption. (Think about the design of the experiment or, if an observational 
ANOVA (and study, how the data were collected.)

conditions to check) ● Equal Variance Assumption. (Similar Variance Condition. Look at side-by-side boxplots to
check for similar spreads, or look at residuals vs. predicted to see if the plot thickens.)

● Normal Population Assumption. (Nearly Normal Condition. Check a histogram or Normal
probability plot of the residuals.)

Residual standard The residual standard deviation,
deviation

,

gives an idea of the underlying variability of the response values.

Balance An experiment’s design is balanced if each treatment level has the same number 
of experimental units. Balanced designs make calculations simpler and are generally 
more powerful.

sp 5 2MSE 5 Å ge2

N 2 k

eik 5 yik 2 ykŷik 5 ykyik 5 yk 1 eik

yik 5 mk 1 eik.



Multiple If we reject the null hypothesis of equal means, we often then want to investigate further and 
comparisons compare pairs of treatment group means to see if they differ. If we want to test several such

pairs, we must adjust for performing several tests to keep the overall risk of a Type I error from
growing too large. Such adjustments are called methods for multiple comparisons.

Least significant The standard margin of error in the confidence interval for the difference of two means is called 
difference (LSD) the least significant difference. It has the correct Type I error rate for a single test, but not when

performing more than one comparison.

Bonferroni method One of many methods for adjusting the length of the ME when testing the differences between
several group means.

Minimum significant The Bonferroni method’s ME for the confidence interval for the difference of two group means
difference (MSD) is called the minimum significant difference. This can be used to test differences of several

pairs of group means. If their difference exceeds the MSD, they are different at the overall 
a rate.

S K I L L S When you complete this lesson you should:

• Recognize situations for which ANOVA is the appropriate analysis.

• Know how to examine your data for violations of conditions that would make ANOVA
unwise or invalid.

• Recognize when a further analysis of differences between group means would be
appropriate.

• Be able to perform an ANOVA using a statistics package or calculator for one response
variable and one factor with any number of levels.

• Be able to perform several subsequent tests using a multiple comparisons procedure.

• Be able to explain the contents of an ANOVA table, in particular the role of the MST,
MSE, and the standard deviation of the error, sp.

• Be able to interpret a test of the null hypothesis that the true means of several indepen-
dent groups are equal. (Your interpretation should include a defense of your Assump-
tion of Equal Variances.)

• Be able to interpret the results of tests that use multiple comparison methods.
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ANOVA on the Computer

Most analyses of variance are found with computers. And all statistics packages present the results
in an ANOVA table much like the one we discussed. Technology also makes it easy to examine the
side-by-side boxplots and check the residuals for violations of the assumptions and conditions.

Statistics packages offer different choices among possible multiple comparisons methods (although
Bonferroni is quite common). This is a specialized area. Get advice or read further if you need to choose a
multiple comparisons method.

As we saw in Chapter 24, there are two ways to organize data recorded for several groups. We can put
all the response values in a single variable and use a second, “factor,” variable to hold the group identities.
This is sometimes called stacked format. The alternative is to place the data for each group in its own col-
umn or variable. Then the variable identities become the group identifiers.

Most statistics packages expect the data to be in stacked format because this form also works for more
complicated experimental designs. Some packages can work with either form, and some use one form for
some things and the other for others. (Be careful, for example, when you make side-by-side boxplots; be
sure to give the appropriate version of the command to correspond to the structure of your data.)

Most packages offer to save residuals and predicted values and make them available for further tests
of conditions. In some packages you may have to request them specifically.

DATA DESK

• Select the response variable as Y and the factor variable as X.
• From the Calc menu, choose ANOVA.
• Data Desk displays the ANOVA table.
• Select plots of residuals from the ANOVA table’s HyperView

menu.

Comments
Data Desk expects data in “stacked” format. You can change the
ANOVA by dragging the icon of another variable over either the Y
or X variable name in the table and dropping it there. The analy-
sis will recompute automatically.

EXCEL

• From the tools menu, select Data Analysis.
• Select Anova Single Factor from the list of analysis tools.
• Click the OK button.
• Enter the data range in the box provided.
• Check the Labels in First Row box, if applicable.
• Enter an alpha level for the F-test in the box provided.
• Click the OK button.

Comments
The data range should include two or more columns of data to
compare. Unlike all other statistics packages, Excel expects
each column of the data to represent a different level of the fac-
tor. However, it offers no way to label these levels. The columns
need not have the same number of data values, but the selected
cells must make up a rectangle large enough to hold the column
with the most data values.

JMP

• From the Analyze menu select Fit Y by X.
• Select variables: a quantitative Y, Response variable, and a

categorical X, Factor variable.
• JMP opens the Oneway window.
• Click on the red triangle beside the heading, select Display

Options, and choose Boxplots.
• From the same menu choose the Means/ANOVA.t-test com-

mand.
• JMP opens the oneway ANOVA output.

Comments
JMP expects data in “stacked” format with one response and one
factor variable.
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MINITAB

• Choose ANOVA from the Stat menu.
• Choose One-way... from the ANOVA submenu.
• In the One-way Anova dialog, assign a quantitative Y variable

to the Response box and assign a categorical X variable to the
Factor box.

• Check the Store Residuals check box.
• Click the Graphs button.
• In the ANOVA-Graphs dialog, select Standardized residuals,

and check Normal plot of residuals and Residuals versus
fits.

• Click the OK button to return to the Regression dialog.
• Click the OK button to compute the regression.

Comments
If your data are in unstacked format, with separate columns for
each treatment level, choose One-way (unstacked) from the
ANOVA submenu.

SPSS

• Choose Compare Means from the Analyze menu.
• Choose One-way ANOVA from the Compare Means sub-

menu.
• In the One-Way ANOVA dialog, select the Y-variable and move

it to the dependent target. Then move the X-variable to the in-
dependent target.

• Click the OK button.

Comments
SPSS expects data in stacked format. The Contrasts and Post
Hoc buttons offer ways to test contrasts and perform multiple
comparisons. See your SPSS manual for details.

TI-89

Under STAT Tests choose C:ANOVA
• Specify the input method (Data or Stats) according to whether

you have data entered as one list for each group or summary
statistics for each group, and specify the number of groups.
Press 4.

• If Data, you will then be asked to supply the name of each list.
• If Stats, you will be asked for the stats for each group. Enter n,

ì, and s for each group separated by commas and within curly
braces ({and}).

• Press 4 to perform the calculations.

Comments
In addition to the ANOVA table output, the calculator creates
three new lists—the means for each group (in the order speci-
fied) and individual 95% confidence interval upper and lower
bounds.



1. Popcorn. A student runs an experiment to test four dif-
ferent popcorn brands, recording the number of kernels
left unpopped. She pops measured batches of each
brand 4 times, using the same popcorn popper and ran-
domizing the order of the brands. After collecting her
data and analyzing the results, she reports that the F-ratio
is 13.56.
a) What are the null and alternative hypotheses?
b) How many degrees of freedom does the treatment

sum of squares have? How about the error sum of
squares?

c) Assuming that the conditions required for ANOVA
are satisfied, what is the P-value? What would you
conclude?

d) What else about the data would you like to see in order
to check the assumptions and conditions?

2. Skating. A figure skater tried various approaches to her
Salchow jump in a designed experiment using 5 different
places for her focus (arms, free leg, midsection, take-off
leg, and free). She tried each jump 6 times in random or-
der, using two of her skating partners to judge the jumps
on a scale from 0 to 6. After collecting the data and ana-
lyzing the results, she reports that the F-ratio is 7.43.
a) What are the null and alternative hypotheses?
b) How many degrees of freedom does the treatment

sum of squares have? How about the error sum of
squares?

c) Assuming that the conditions are satisfied, what is
the P-value? What would you conclude?

d) What else about the data would you like to see in order
to check the assumptions and conditions?

3. Gas mileage. A student runs an experiment to study the
effect of three different mufflers on gas mileage. He de-
vises a system so that his Jeep Wagoneer uses gasoline
from a one-liter container. He tests each muffler 8 times,
carefully recording the number of miles he can go in his
Jeep Wagoneer on one liter of gas. After analyzing his
data, he reports that the F-ratio is 2.35 with a P-value of
0.1199.
a) What are the null and alternative hypotheses?
b) How many degrees of freedom does the treatment sum

of squares have? How about the error sum of squares?
c) What would you conclude?
d) What else about the data would you like to see in order

to check the assumptions and conditions?
e) If your conclusion in part c is wrong, what type of error

have you made?

4. Darts. A student interested in improving her dart-
throwing technique designs an experiment to test 4 dif-
ferent stances to see whether they affect her accuracy.
After warming up for several minutes, she randomizes

the order of the 4 stances, throws a dart at a target using
each stance and, measures the distance of the dart in cen-
timeters from the center of the bull’s-eye. She replicates
this procedure 10 times. After analyzing the data she re-
ports that the F-ratio is 1.41.
a) What are the null and alternative hypotheses?
b) How many degrees of freedom does the treatment

sum of squares have? How about the error sum of
squares?

c) What would you conclude?
d) What else about the data would you like to see in order

to check the assumptions and conditions?
e) If your conclusion in part c is wrong, what type of error

have you made?

5. Activating baking yeast. To shorten the time it takes
him to make his favorite pizza, a student designed an ex-
periment to test the effect of sugar and milk on the acti-
vation times for baking yeast. Specifically, he tested four
different recipes and measured how many seconds it
took for the same amount of dough to rise to the top of a
bowl. He randomized the order of the recipes and repli-
cated each treatment 4 times.

Here are the boxplots of activation times from the four
recipes:

The ANOVA table follows:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Recipe 3 638967.69 212989 44.7392 , 0.0001
Error 12 57128.25 4761
Total 15 696095.94

a) State the hypotheses about the recipes (both numeri-
cally and in words).
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b) Assuming that the assumptions for inference are sat-
isfied, perform the hypothesis test and state your
conclusion. Be sure to state it in terms of activation
times and recipes.

c) Would it be appropriate to follow up this study with
multiple comparisons to see which recipes differ in
their mean activation times? Explain.

6. Frisbee throws. A student performed an experiment
with three different grips to see what effect it might have
on the distance of a backhanded Frisbee throw. She tried
it with her normal grip, with one finger out, and with the
Frisbee inverted. She measured in paces how far her
throw went. The boxplots and the ANOVA table for the
three grips are shown below:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Grip 2 58.58333 29.2917 2.0453 0.1543
Error 21 300.75000 14.3214
Total 23 359.33333

a) State the hypotheses about the grips.
b) Assuming that the assumptions for inference are sat-

isfied, perform the hypothesis test and state your
conclusion. Be sure to state it in terms of Frisbee
grips and distance thrown.

c) Would it be appropriate to follow up this study with
multiple comparisons to see which grips differ in
their mean distance thrown? Explain.

7. Eye and hair color. In Chapter 5, Exercise 47, we saw a
survey of 1021 school-age children conducted by ran-
domly selecting children from several large urban ele-
mentary schools. Two of the questions concerned eye and
hair color. In the survey, the following codes were used:
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The students analyzing the data were asked to study the
relationship between eye and hair color. They produced
this plot:

and ran an Analysis of Variance with Eye color as the re-
sponse and Hair color as the predictor. The ANOVA table
they produced follows:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Hair color 4 1.46946 0.367365 0.4024 0.8070
Error 1016 927.45317 0.912848
Total 1020 928.92263

What suggestions do you have for the Statistics stu-
dents? What alternative analysis might you suggest?

8. Zip codes revisited. The intern from the marketing de-
partment at the Holes R Us online piercing salon has re-
cently finished a study of the company’s 500 customers.
He wanted to know whether people’s zip codes vary by
the last product they bought. They have 16 different
products, and the ANOVA table of zip code by product
showed the following:

ANOVA table

Sum of Mean
Source DF Squares Square F-ratio P-value
Product 15 3.836e10 2.55734e9 4.9422 , 0.0001
Error 475 2.45787e11 517445573
Total 490 2.84147e11

(Nine customers were not included because of missing
zip code or product information.)

What criticisms of the analysis might you make? What
alternative analysis might you suggest?

9. Fuel economy revisited. In Chapter 5, we looked at
what these boxplots told us about the relationship be-
tween the number of cylinders a car’s engine has and the
car’s fuel economy.
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a) State the null and alternative hypotheses.
b) Do the conditions for an ANOVA seem to be met

here? Why or why not?

10. Wines revisited. The boxplots we saw in Chapter 5, Ex-
ercise 23, display case prices (in dollars) of wines pro-
duced by wineries along three of the Finger Lakes.

a) What are the null and alternative hypotheses? Talk
about prices and location, not symbols.

b) Do the conditions for an ANOVA seem to be met
here? Why or why not?

11. Tellers. A bank is studying the time that it takes 6 of its
tellers to serve an average customer. Customers line up
in the queue and then go to the next available teller. Here
is a boxplot of the last 200 customers and the times it
took each teller:
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Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Teller 5 3315.32 663.064 1.508 0.1914
Error 134 58919.1 439.695
Total 139 62234.4

a) What are the null and alternative hypotheses?
b) What do you conclude?
c) Would it be appropriate to run a multiple compar-

isons test (for example, a Bonferroni test) to see
which tellers differ from each other? Explain.

12. Hearing. A researcher investigated four different word
lists for use in hearing assessment (Loven, 1981). She
wanted to know whether the lists were equally difficult
to understand in the presence of a noisy background. To
find out, she tested 24 subjects with normal hearing and
measured the number of words perceived correctly in
the presence of background noise. Here are the boxplots
of the four lists:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
List 3 920.4583 306.819 4.9192 0.0033
Error 92 5738.1667 62.371
Total 95 6658.6250

a) What are the null and alternative hypotheses?
b) What do you conclude?
c) Would it be appropriate to run a multiple compar-

isons test (for example, a Bonferroni test) to see
which lists differ from each other in terms of mean
percent correct? Explain.

13. Yogurt. An experiment to determine the effect of several
methods of preparing cultures for use in commercial yo-
gurt was conducted by a food science research group.
Three batches of yogurt were prepared using each of
three methods: traditional, ultrafiltration, and reverse
osmosis. A trained expert then tasted each of the 9 sam-
ples, presented in random order, and judged them on a
scale from 1 to 10. A partially complete Analysis of Vari-
ance table of the data is shown on the following page.
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An incomplete ANOVA Table for the Yogurt Data

Sum of Degrees of Mean
Source Squares Freedom Square F-ratio
Treatment 17.300
Residual 0.460
Total 17.769

a) Calculate the mean square of the treatments and the
mean square of the error.

b) Form the F-statistic by dividing the two mean squares.
c) The P-value of this F-statistic turns out to be

0.000017. What does this say about the null hypothe-
sis of equal means?

d) What assumptions have you made in order to an-
swer part c?

e) What would you like to see in order to justify the
conclusions of the F-test?

f) What is the average size of the error standard devia-
tion in the judge’s assessment?

14. Smokestack scrubbers. Particulate matter is a serious
form of air pollution often arising from industrial pro-
duction. One way to reduce the pollution is to put a fil-
ter, or scrubber, at the end of the smokestack to trap the
particulates. An experiment to determine which
smokestack scrubber design is best was run by placing
four scrubbers of different designs on an industrial stack
in random order. Each scrubber was tested 5 times. For
each run, the same material was produced, and the par-
ticulate emissions coming out of the scrubber were mea-
sured (in parts per billion). A partially complete Analysis
of Variance table of the data is shown below.

An incomplete ANOVA Table for the Smokestack Data

Sum of Degrees of Mean
Source Squares Freedom Square F-ratio
Treatment 81.2
Residual 30.8
Total 112.0

a) Calculate the mean square of the treatments and the
mean square of the error.

b) Form the F-statistic by dividing the two mean
squares.

c) The P-value of this F-statistic turns out to be
0.00000949. What does this say about the null hy-
pothesis of equal means?

d) What assumptions have you made in order to an-
swer part c?

e) What would you like to see in order to justify the
conclusions of the F-test?

f) What is the average size of the error standard devia-
tion in particulate emissions?

15. Eggs. A student wants to investigate the effects of real
vs. substitute eggs on his favorite brownie recipe. He en-
lists the help of 10 friends and asks them to rank each of

8 batches on a scale from 1 to 10. Four of the batches
were made with real eggs, four with substitute eggs. The
judges tasted the brownies in random order. Here is a
boxplot of the data:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Eggs 1 9.010013 9.01001 31.0712 0.0014
Error 6 1.739875 0.28998
Total 7 10.749883

The mean score for the real eggs was 6.78 with a stan-
dard deviation of 0.651. The mean score for the substi-
tute eggs was 4.66 with a standard deviation of 0.395.
a) What are the null and alternative hypotheses?
b) What do you conclude from the ANOVA table?
c) Do the assumptions for the test seem to be reasonable?
d) Perform a two-sample pooled t-test of the difference.

What P-value do you get? Show that the square of
the t-statistic is the same (to rounding error) as the 
F-ratio.

16. Auto noise filters. In a statement to a Senate Public
Works Committee, a senior executive of Texaco, Inc.,
cited a study on the effectiveness of auto filters on reduc-
ing noise. Because of concerns about performance, two
types of filters were studied, a standard silencer and a
new device developed by the Associated Octel Com-
pany. Here are the boxplots from the data on noise re-
duction (in decibels) of the two filters. Type 1 5 standard;
Type 2 5 Octel.
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Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Type 1 631.186 631.186 0.7673 0.3874
Error 33 27147.386 822.648
Total 34 27778.572

Level n Mean StdDev
Standard 18 815.556 32.2166
Octel 17 807.059 24.3708

a) What are the null and alternative hypotheses?
b) What do you conclude from the ANOVA table?
c) Do the assumptions for the test seem to be reasonable?
d) Perform a two-sample pooled t-test of the difference.

What P-value do you get? Show that the square of
the t-statistic is the same (to rounding error) as the 
F-ratio.

17. School system. A school district superintendent wants
to test a new method of teaching arithmetic in the fourth
grade at his 15 schools. He plans to select 8 students
from each school to take part in the experiment, but to
make sure they are roughly of the same ability, he first
gives a test to all 120 students. Here are the scores of the
test by school:

The ANOVA table shows:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
School 14 108.800 7.7714 1.0735 0.3899
Error 105 760.125 7.2392
Total 119 868.925

a) What are the null and alternative hypotheses?
b) What does the ANOVA table say about the null hy-

pothesis? (Be sure to report this in terms of scores
and schools.)

c) An intern reports that he has done t-tests of every
school against every other school and finds that sev-
eral of the schools seem to differ in mean score. Does
this match your finding in part b? Give an explana-
tion for the difference, if any, of the two results.
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18. Fertilizers. A biology student is studying the effect of 10
different fertilizers on the growth of mung bean sprouts.
She sprouts 12 beans in each of 10 different petri dishes,
and adds the same amount of fertilizer to each dish. After
one week she measures the heights of the 120 sprouts in
millimeters. Here are boxplots and an ANOVA table of
the data:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Fertilizer 9 2073.708 230.412 1.1882 0.3097
Error 110 21331.083 193.919
Total 119 23404.791

a) What are the null and alternative hypotheses?
b) What does the ANOVA table say about the null hy-

pothesis? (Be sure to report this in terms of heights
and fertilizers).

c) Her lab partner looks at the same data and says that
he did t-tests of every fertilizer against every other
fertilizer and finds that several of the fertilizers seem
to have significantly higher mean heights. Does this
match your finding in part b? Give an explanation
for the difference, if any, between the two results.

19. Cereals. Supermarkets often place similar types of ce-
real on the same supermarket shelf. The same data set
we met in Chapter 8 keeps track of the shelf as well as
the sugar, sodium, and calorie content of 77 cereals. Does
sugar content vary by shelf? Here’s a boxplot and an
ANOVA table for the 77 cereals:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Shelf 2 248.4079 124.204 7.3345 0.0012
Error 74 1253.1246 16.934
Total 76 1501.5325

Level n Mean StdDev
1 20 4.80000 4.57223
2 21 9.61905 4.12888
3 36 6.52778 3.83582
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Means and Std Deviations

Level n Mean StdDev
1 20 2.65000 1.46089
2 21 1.90476 0.99523
3 36 2.86111 0.72320

a) What are the null and alternative hypotheses?
b) What does the ANOVA table say about the null hy-

pothesis? (Be sure to report this in terms of protein
content and shelves.)

c) Can we conclude that cereals on shelf 2 have a lower
mean protein content than cereals on shelf 3? Can we
conclude that cereals on shelf 2 have a lower mean
protein content than cereals on shelf 1? What can we
conclude?

d) To check for significant differences between the shelf
means we can use a Bonferroni test, whose results are
shown below. For each pair of shelves, the difference is
shown along with its standard error and significance
level. What does it say about the questions in part c?
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Dependent Variable: SUGARS

Mean

Differ- 95% 

(I) (J) ence Std. P- Confidence

SHELF SHELF (I-J) Error value Interval

Bonferroni Lower Upper 

Bound Bound

1 2 24.819(*) 1.2857 0.001 27.969 21.670

3 21.728 1.1476 0.409 24.539 1.084

2 1 4.819(*) 1.2857 0.001 1.670 7.969

3 3.091(*) 1.1299 0.023 0.323 5.859

3 1 1.728 1.1476 0.409 21.084 4.539

2 23.091(*) 1.1299 0.023 25.859 20.323

* The mean difference is significant at the .05 level.

a) What are the null and alternative hypotheses?
b) What does the ANOVA table say about the null hy-

pothesis? (Be sure to report this in terms of sugar and
shelves.)

c) Can we conclude that cereals on shelf 2 have a higher
mean sugar content than cereals on shelf 3? Can we
conclude that cereals on shelf 2 have a higher mean
sugar content than cereals on shelf 1? What can we
conclude?

d) To check for significant differences between the shelf
means, we can use a Bonferroni test, whose results are
shown below. For each pair of shelves, the difference is
shown along with its standard error and significance
level. What does it say about the questions in part c?
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20. Cereals redux. We also have data on the protein content
of cereals by their shelf number. Here is the boxplot and
ANOVA table:

Analysis of Variance

Sum of Mean
Source DF Squares Square F-ratio P-value
Shelf 2 12.4258 6.2129 5.8445 0.0044
Error 74 78.6650 1.0630
Total 76 91.0909

Dependent Variable: PROTEIN
Bonferroni

Mean
Differ- 95%

(I) (J) ence Std. P- Confidence
SHELF SHELF (I-J) Error value Interval

Lower Upper
Bound Bound

1 2 0.75 0.322 0.070 20.04 1.53
3 20.21 0.288 1.000 20.92 0.49

2 1 20.75 0.322 0.070 21.53 0.04
3 20.96(*) 0.283 0.004 21.65 20.26

3 1 0.21 0.288 1.000 20.49 0.92
2 0.96(*) 0.283 0.004 0.26 1.65

*The mean difference is significant at the .05 level.

21. Downloading. To see how much of a difference time of
day made on the speed at which he could download files,
a college sophomore performed an experiment. He placed
a file on a remote server and then proceeded to download
it at three different time periods of the day. He down-
loaded the file 48 times in all, 16 times in each time period.



a) State the null and alternative hypotheses, being care-
ful to talk about download times and time of day as
well as parameters.

b) Perform an ANOVA on these data. What can you
conclude?

c) Check the assumptions and conditions for an
ANOVA. Do you have any concerns about the exper-
imental design or the analysis?

d) (Optional) Perform a multiple comparisons test to
determine which times of day differ in terms of mean
download time.

22. Analgesics. A pharmaceutical company tested three for-
mulations of a pain relief medicine for migraine
headache sufferers. For the experiment 27 volunteers
were selected and 9 were randomly assigned to one of
three drug formulations. The subjects were instructed to
take the drug during their next migraine headache
episode and to report their pain on a scale of 1 5 no pain
to 10 5 extreme pain 30 minutes after taking the drug.

a) State the null and alternative hypotheses, being care-
ful to talk about drugs and pain levels as well as pa-
rameters.

b) Perform an ANOVA on these data. What can you
conclude?

c) Check the assumptions and conditions for an
ANOVA. Do you have any concerns about the exper-
imental design or the analysis?

d) (Optional) Perform a multiple comparisons test to
determine which drugs differ in terms of mean pain
level reported.
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Time of day Time (sec) Time of day Time (sec) Time of day Time (sec)

Early (7 a.m.) 68 Evening (5 p.m.) 299 Late night (12 a.m.) 216
Early (7 a.m.) 138 Evening (5 p.m.) 367 Late night (12 a.m.) 175
Early (7 a.m.) 75 Evening (5 p.m.) 331 Late night (12 a.m.) 274
Early (7 a.m.) 186 Evening (5 p.m.) 257 Late night (12 a.m.) 171
Early (7 a.m.) 68 Evening (5 p.m.) 260 Late night (12 a.m.) 187
Early (7 a.m.) 217 Evening (5 p.m.) 269 Late night (12 a.m.) 213
Early (7 a.m.) 93 Evening (5 p.m.) 252 Late night (12 a.m.) 221
Early (7 a.m.) 90 Evening (5 p.m.) 200 Late night (12 a.m.) 139
Early (7 a.m.) 71 Evening (5 p.m.) 296 Late night (12 a.m.) 226
Early (7 a.m.) 154 Evening (5 p.m.) 204 Late night (12 a.m.) 128
Early (7 a.m.) 166 Evening (5 p.m.) 190 Late night (12 a.m.) 236
Early (7 a.m.) 130 Evening (5 p.m.) 240 Late night (12 a.m.) 128
Early (7 a.m.) 72 Evening (5 p.m.) 350 Late night (12 a.m.) 217
Early (7 a.m.) 81 Evening (5 p.m.) 256 Late night (12 a.m.) 196
Early (7 a.m.) 76 Evening (5 p.m.) 282 Late night (12 a.m.) 201
Early (7 a.m.) 129 Evening (5 p.m.) 320 Late night (12 a.m.) 161

Drug Pain Drug Pain Drug Pain

A 4 B 6 C 6
A 5 B 8 C 7
A 4 B 4 C 6
A 3 B 5 C 6
A 2 B 4 C 7
A 4 B 6 C 5
A 3 B 5 C 6
A 4 B 8 C 5
A 4 B 6 C 5

T


