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Chapter 9

Two Factor Designs -
Single-sized Experimental
units - CR and RCB designs

9.1 Introduction

So far we’ve looked at two different experimental designs, the single-factor com-
pletely randomized design (1-factor CRD), and the single-factor randomized
compete block design (1-factor RCB).

Both designs investigated if differences in the mean response could be at-
tributed to different levels of a single factor. However, in many experiments,
interest lies not only in the effect of a single factor, but in the joint effects of 2
or more factors.

For example:

• Yield of wheat. The yield of wheat depends upon many factors - two of
which may be the variety and the amount of fertilizer applied. This has
two factors - (1) variety which may have three levels representing three
popular types of seeds, and (2) the amount of fertilizer which may be set
at two levels.

• Pesticide levels. The pesticide levels may be measured in birds which
may depend upon gender (two levels) and distance of the wintering grounds
from agricultural fields (three levels).
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9.1. INTRODUCTION

• Performance of a product. The strength of paper may depend upon
the amount of water added (two levels) and the type of wood fiber used
in the mix (three levels).

There are many ways to design experiments with multiple factors - we will
examine three of the most common designs used in ecological research - the
completely randomized design (this chapter), the randomized block design (this
chapter), and the split-plot design (next chapter).

As noted many times in this course, it is important to match the analysis
of the data with the way the data was collected. Before attempting to analyze
any experiment, the features of the experiment should be examined carefully.
In particular, care must be taken to examine

• the treatment structure;

• the experimental unit structure;

• the randomization structures;

• the presence or absence of balance;

• if the levels of factors are fixed or random effects; and

• the assumptions implicitly made for the design.

If these features are not identified properly, then an incorrect design and analysis
of an experiment will be made.

9.1.1 Treatment structure

The treatment structure refers to how the various levels of the factors are com-
bined in the experiment.

The first step in any design or analysis is to start by identifying the factors
in the experiment,their associated levels, and the treatments in the experiment.
Treatments are the combinations of factor levels that are ‘applied’ 1 to experi-
mental units.

The two-factor design has, as the name implies, two factors. We generically
call these Factor A and Factor B with a and b levels respectively. We will

1Recall that in analytical surveys, the factor levels cannot be assigned to units (e.g. you
can’t assign sex to an animal) and so the key point is that units are randomly selected from
the population
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examine only factorial treatment structures, i.e. every treatment combination
appears somewhere in the experiment. For example, if Factor A has 2 levels,
and Factor B has 3 levels, then all 6 treatment combinations appear in the
experiment.

Why factorial designs?

Why do we insist on factorial treatment structures? There is a temptation to
investigate multi-factor effects using a ‘change-one-at-time’ structure. For ex-
ample, suppose you are investigating the effects of process temperature (at two
levels, H & L), fiber type (at two levels - deciduous and coniferous) and initial
pulping method (at two levels - mechanical or chemical) upon the strength of pa-
per. In the ‘change-one-at-a-time’ treatment structure, the following treatment
combinations would be tested:

1. L deciduous mechanical
2. H deciduous mechanical
3. L coniferous mechanical
4. L deciduous chemical

The researcher then argues that the effect of fiber type could be found by exam-
ining the difference in strength between (1) and (3); the effect of pulping method
could be found by examining the difference in strength between (4) and (1); and
the effect of process temperature could be found by examining the difference in
strength between (1) and (2).

This is valid provided that the researcher is willing to assume the
treatment effects are additive, i.e., that the effect of process temperature
is the same at all levels of the other factors; that the effect of fiber type is
the same at all levels of the other factors; and that the effect of initial pulping
method is the same at all levels of the other factors. Unfortunately, there is
no method available to test this assumption with the set of treatments listed
above.

It is usually not a good idea to make this very strong assumption - what
happens if the assumption is not true? In the previous example, it means that
your ‘effects’ are only valid for the particular levels of the other factors that
happened to be present in the comparison. For example, the process tempera-
ture effect would only be valid for deciduous fiber sources that are mechanically
pulped.

A superior treatment structure is the factorial treatment structure. In
the factorial treatment structure, every combination of levels appears in the

c©2003 Carl James Schwarz 5



9.1. INTRODUCTION

experiment. For example, referring back to the previous experiment, all of the
following treatments would appear in the experiment:

1. L deciduous mechanical
2. H deciduous mechanical
3. L coniferous mechanical
4. H coniferous mechanical
5. L deciduous chemical
6. H deciduous chemical
7. L coniferous chemical
8. H coniferous chemical

Now, the main effects of each factor are found as:

• main effect of temperature - treatments 1, 3, 5, 7 vs. 2, 4, 6, 8

• main effect of source - treatments 1, 2, 5, 6 vs 2, 4, 7 and 8

• main effect of method - treatments 1, 2, 3, 4 vs. 5, 6, 7, 8

Each main effect would be interpreted at the ‘average change’ over the levels of
the other factors.

In addition, it is possible to investigate if interactions exist between the
various factors. For example, is the effect of process temperature the same for
mechanical and chemical pulping methods? This would be examined by com-
paring the change in (1)+(3) vs. (2)+(4) [representing the effect of temperature
for mechanically pulped wood] and the change in (5)+(7) vs. (6)+(8) [repre-
senting the effect of temperature for chemically pulped wood]. Can you specify
how you would investigated the interaction between temperature and source?
What about between source and method of pulping? All of these are known as
two factor interactions.

The concept of a two-factor interaction can also be generalized to three-factor
and higher interaction terms in much the same way.

Why not factorial designs?

While a factorial treatment structure provides the maximal amount of informa-
tion about the effects of factors and their interactions, there are some disadvan-
tages. In general, the number of treatments that will appear in the experiment is
equal to the product of the levels from all of the factors. In an experiment with
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many factors, this can be enormous. For example, in a 10 factor design, with
each factor at 2 levels, there are 1024 treatment combinations. It turns out that
in such large experiment, there are better ways to proceed that are beyond the
scope of this course - an example of which is a fractional factorial design which
selects a subset of the possible treatments to run with the understanding that
the subset chosen loses information on some of the higher order interactions. If
you are contemplating such an experiment, please seek competent help.

As well, in some cases, interest lies in estimating a response surface, e.g.
factors are continuous variables (such a temperature) and the experimenter is
interested in finding the optimal conditions. This gives rise to a class of designs
called response surface designs which are beyond the scope of this course.
Again, seek competent help.

Displaying and interpreting treatment effects - profile plots

An important part of the design and analysis of experiment lies in predicting
the type of response expected - in particular, what do you expect for the size of
the main effects and do you expect to see an interaction.

During the design phase, these are useful to determining the power and
needed sample sizes for an experiment. During the analysis phase, these values
and plots help in interpreting the results of the statistical analysis.

With two factors (A and B) each at two levels, you can construct a profile
plot. These profile plots show the approximate effect of both factors simulta-
neously.

The key thing to look for is the ‘parallelism’ of the two lines.

Profile plots with no interaction between factors
For example, consider the theoretical [it is theoretical because it shows the
true population means which are never known exactly] profile plot of the mean
responses below:

c©2003 Carl James Schwarz 7



9.1. INTRODUCTION

In this plot, the vertical distance between the two parallel line segments is
the effect of Factor B, i.e., what happens to the mean response when you change
the level of Factor B, but keep the level of Factor A constant. The main effect
of Factor B is the AVERAGE vertical distance between the two lines when
averaged over all levels of Factor A. Notice that if the lines are parallel, the
vertical distance between the two lines is constant - this implies that the effect
of Factor B (the vertical distance between the two lines) is the same regardless
of the level of Factor A and the effect of Factor B and the main effect of Factor B
are synonymous. In this case, we say that there is NO INTERACTION between
Factor A and Factor B. Similarly, the effect of Factor A is the change in the line
between the two levels of Factor A at a particular value of Factor B, i.e., the
vertical change in each each line segment. The main effect of Factor A is the
AVERAGE change when averaged over all levels of Factor B. Notice that if the
lines are parallel, the vertical change is the same for both lines - this implies
that the effect of Factor A is the same regardless of the level of Factor B and
that the effect of Factor A is synonymous with the main effect of Factor A. Once
again, there is no interaction between A and B.

Profile plots with interaction between factors

Now consider the following theoretical profile plot:

c©2003 Carl James Schwarz 8
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In this plot, the vertical distance between the line segments CHANGES
depending on where you are in Factor A. This implies that the effect of Factor
B changes depending upon the level of A, i.e., there is INTERACTION between
Factor A and B. The main effect of Factor A is the average effect when averaged
over levels of B. In this case the main effect is not very interpretable (as will
be seen in the plots below). Similarly, the vertical change for each line segment
is different for each segment - again the effect of Factor A changes depending
upon the level of Factor B - once again there is interaction between A and B.

The plots from an actual experiment must be interpreted with a grain of salt
because even if there was no interaction, the lines may not be exactly parallel
because of sampling variations in the sample means. The key thing to look
for is the degree of parallelism. And it doesn’t matter which factor is plotted
along the bottom - the plots may look different, but you will come to the same
conclusions.

If there is interaction, the line segments may even cross rather than remain-
ing separate.

Illustrations of various theoretical profile plots

c©2003 Carl James Schwarz 9
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• No main effect of Factor A (average of lines is flat); small main effect of
Factor B (if there was no main effect of Factor B the lines would coincide);
and no interaction of Factors A and B.

• Large main effect of Factor A; small main effect of Factor B (average
difference between lines is small); and no interaction between Factors A
and B.

• No main effect of Factor A; large main effect of Factor B; and no interaction
between Factors A and B.

c©2003 Carl James Schwarz 10
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• Large main effect of Factor A; large main effect of Factor B; and no inter-
action between Factors A and B.

• No main effect of Factor A; no main effect of Factor B; but large interac-
tion between Factors A and B. This illustrates the dangers of investigating
‘main effects’ in the presence of interaction (why? - a good exam ques-
tion!).

c©2003 Carl James Schwarz 11
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• Large main effect of Factor A; no main effect of factor B: slight interaction.
Again, this diagram illustrates the folly of discussing main effects in the
presence of an interaction (why?).

• No main effect of Factor A; large main effect of Factor B; large interaction
between Factor A and B. As before, there may be problems in interpreting
main effects in the presence of an interaction (why?).

c©2003 Carl James Schwarz 12
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• Small main effect of factor A; large main effect of Factor B; large interac-
tion between Factors A and B. See previous notes about interpreting main
effects in the presence of an interaction.

Further examples of profile plots

• Discuss the example of an environmental impact study. Here interaction
indicates that there was an impact.

• Discuss profile plots for three factors.

• Here is the profile plot for an experiment to investigate the effect of wing
depth and wing width upon the flight of paper airplanes. Based upon the
profile plot below, what do you conclude?

The MOF publication Displaying factor relationships2 also has a discussion
2http:../../MOF/pamp55.pdf
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9.1. INTRODUCTION

on profile plots.

9.1.2 Experimental unit structure

The experimental unit structure is the key element to the design of the experi-
ment and the recognition of an existing experimental design.

In single-factor experiments, there is usually only a single size of experimen-
tal unit and the only design choice is blocking or not. However, in multifactor
designs, the choices are much greater and the potential problems in design and
analysis multiply!

For example, consider the following experimental designs to investigate the
effect of light level (at two levels - High and Low), and the amount of water
(also at two levels - Dry or Wet) upon the growth of pine tree seedlings in a
greenhouse. There are a total of 8 seedlings.

• Design 1. Each seedling is put into its own pot. One pot is placed in each
of 8 separate growth chambers. Two grow chambers are each assigned to
each combination of light level or water amount.

• Design 2. Two seedlings are placed in each pot. One pot is placed in
each of 4 separate growth chambers. Each grow chamber is given one
combination of light level or water amount.

• Design 3. Each seedling is put into its own pot. Two pots are placed into
each of 4 separate growth chambers. Each growth chamber is assigned one
combination of light level and water amount.

• Design 4. Each seedling is put into its own pot. Two pots are placed
in each of 4 separate growth chambers. Two of the growth chambers are
assigned the high light level; two are assigned the low light level. Within
each chamber, one pot receives the wet water level; one pot the dry water
level.

• Design 5. Two seedlings are placed in each pot. Two pots are placed
in each of 4 separate growth chambers. Two of the growth chambers are
assigned the high light level; two are assigned the low light level. Within
each chamber, one pot receives the wet water level; one pot the dry water
level. The growth of each seedling is measured.

Without much difficulty, more ways could be found to run this experiment!
Each different way of design requires a different analysis!

c©2003 Carl James Schwarz 14
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Which experimental unit structure is better? Design 1 requires the most
growth chambers, but is easiest to run. Design 2 requires fewer growth chambers,
but suppose that the particular pot had an effect on growth (e.g. the previous
researcher used a herbicide in a previous experiment and didn’t clean the pot
properly). Design 3 requires that two pots be placed in each chamber - is the
chamber big enough? There is no best design that fits all problems!

In all cases, the data will consist of 8 measures of growth along with the
light level and water level received. The data will not tell you about the
experimental unit structure! Consequently, it is imperative that you think
very carefully about the experimental unit structure and give explicit instruc-
tions on how to perform the experiment so that there is no ambiguity. You will
see later in the course that every one of the previous designs would be analyzed
in a different way!

In this course, we will look at two popular experimental design choices:

1. the Single-size of experimental unit (with and without blocking)

2. the Split-plot Design (with and without blocking) The Split-plot design
(which takes its name from its agricultural heritage) is the most common
‘complicated’ design and, unfortunately, the design that is most often
analyzed incorrectly. It is discussed in the next chapter.

The simplest designs have a single size of experimental unit and the obser-
vation unit is the same as the experimental unit, i.e. only one measurement is
taken on each experimental unit. The greatest advantage of using a single sized
unit is that loss of that unit only entails the loss of one data point. If you are
conducting multiple measurements on the same unit (e.g. following a unit over
time), then the loss of that unit entails the potential loss of much more infor-
mation. The greatest disadvantage of using a single-sizes unit is that variation
in responses may give poor power. However, the simple strategy of blocking is
often sufficient to improve power without making the design too complicated.

A common problem is pseudo-replication where the observational unit is not
the same as the experimental unit. Hurlbert (1984) should be reread at this
point.

In some designs, multiple measurements are taken on the SAME experimen-
tal units - typically repeated measurements over time. 3 The most common
reason for multiple measurements on the same unit is to have each unit serve

3Many experiments have TIME as one of their factors. If the same units are measured
repeatedly over time, this is definitely NOT a completely randomized design. A more appro-
priate analysis would be a repeated measures design or a split-plot-in-time design. The former
is beyond the scope of this course; the latter will be covered in a later section.
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as its own control and thereby have greater power to detect changes over the
repeated measurements.

9.1.3 Randomization structure

We have already seen two randomization methods:

• Complete randomization where treatments are assigned completely at
random to experimental units

• Complete-Block randomization where experimental units are first
grouped into blocks, every block has every treatment, and treatments
are randomized to units within blocks.

The actual randomization in practice is a straightforward generalization of
that done before for a single-factor design and I won’t spend too much time on
it but it will be discussed in class.

These will be the only two randomization structures considered in this
course. In both cases, there is complete randomization over all units or over
all units within a block. This is makes TIME a particularly difficult factor
- there is often no randomization to new units at different time points. The
problem is that non-randomization often introduces more complex covariance
structures among the responses. For example, in repeated measurements over
time, measurements that are close together in time would be expected to be
more highly correlated than measurements that are far apart in time. In a
complete-randomization scheme, the correlation would not expect to change as
a function of time separation.

Here are some example of experiments that are NOT completely randomized
designs.

• Measuring plankton levels at various locations and distances from the
shore. At each location, samples are taken at 1, 5, and 10 m from the
shore. Here the distance from the shore are not randomized to different
locations - each location has all three distances from shore.

• The concentration of a chemical in the blood stream is measured on each
rat at 1, 5, and 10 minutes after injection. The time of measurement is
not randomized to individual rats - each rat is measured three times.

How could these experiments be redesigned to be CRD’s?

c©2003 Carl James Schwarz 16
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9.1.4 Putting the three structures together

We will examine the four most popular experimental designs based upon the
above three structures. You may wish to draw a picture of the experimental
layouts.

For example, consider the a plant-growth experiment. There are two factors
- light level (High and Low), and water level (Wet or Dry). Some possible
designs that we will demonstrate how to analyze in this course include:

• Completely randomized design. Each seedling is randomly placed in
its own pot. Each pot is randomly placed in its own greenhouse. Each
greenhouse is randomly assigned one of the four treatments at random.
The experiments are all run at the same time or run in random order.

• Randomized complete block design. Each seedling is randomly placed
in its own pot. Four pots are placed in each greenhouse. Within each
greenhouse, each of the four pots is randomly assigned to one of the
four treatment combinations. [This may require some modification to
the greenhouse so that the two light levels can be applied. within each
greenhouse]

• Split-plot - variant A. It may be too difficult to modify the greenhouses
to have both light levels in each greenhouse. Therefore, two greenhouses
are randomly assigned to each light level. Within each greenhouse, two
pots are used. These are randomly assigned to the two watering levels.

• Split-plot - variant B. Four green houses are not available at one site,
but we have two sites available, each with two greenhouses. Therefore, one
greenhouse at each site is randomly assigned to each light level. Within
each greenhouse, two pots are used. These are randomly assigned to the
two watering levels.

Further reading Refer to MOF publication What is the design?4

9.1.5 Balance

Balance is a statistical property of a design. Balance used to be much more
important in the days of hand computations when the computations for balanced
designs were particularly easy to do. This is less important today in the age of
computers but the unwary traveler may hit a few pot holes as will be seen in
later sections.

4http:../../MOF/pamp17.pdf
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The very simplest balanced design has an equal number of replicates assigned
to each treatment combination. Balance in the experiment will give the greatest
power to detect differences among the various treatments. As well, it makes the
analysis particularly simple and most computer packages will do a good job of
the analysis.

However, because of deliberate decision or demonic interference, unbalanced
designs (unequal numbers of replicates for each treatment) can occur. Fortu-
nately, the analysis of such designs in the simple case of a two-factor completely-
randomized design is straightforward, but there are a few subtle problems that
will be pointed out by example. Some computer packages will give incorrect
answers in the case of unbalanced data.

As you will see in a future section, the greatest danger in unbalanced designs
is the lack of a complete factorial treatment structure. These type of experiments
are extremely difficulty to analyze properly.

9.1.6 Fixed or random effects

In some cases, the choice of levels for a factor is also of concern. If the experiment
were to be repeated, would the same levels be chosen (fixed effects) or would
a new set of levels be chosen (random effects). Or, is interested limited to the
effects of the levels that actually occurred in the experiment (fixed effects) or do
you wish to generalize to a large population of levels from which you happened
to choose a few for this experiment (random effects).

As an illustration, consider an experiment on the effects of soil compaction
on subsequent tree growth. Suppose that the experimenter obtained seedlings
from several different seed sources. This experiment could be viewed as having
two factors - the level of soil compaction, and the seeding source.

Presumably, if the experiment were to be repeated, the same levels of com-
paction would be of interest. As well, these levels of compaction are of interest
in their own right. Hence, compaction would be treated as a fixed effect.

However, what about the factor seed source. If the experiment were to be
repeated, would the same sources of seeds be used? Are these the only sources
of seeds available, or are there many other sources, of which only a few were
chosen to be in this experiment? Do you want to extend your inference to other
seed sources, or are these the only ones that you are really interested in?

Usually, you will want to argue that your conclusions should extend to other
seed sources. If this is the case, then you must be able to argue that the sources
you used are in some sense “typical of the ones to which you want to extend
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your inference”. The simplest way to do this is to argue that the sources you
selected were essentially a random sample of all possible seed sources to which
you wish to extend your inference. This factor is then a random effect.

We will start with demonstration of the analysis of experiments where ALL
EFFECTS are fixed effects. You can still proceed to analyze experiment with
random effects the same way as before — up to a point. It turns out that
this seemingly innocuous change to a factor has dramatic implications for the
analysis of the experiment! As well MANY poorly written packages will
give WRONG RESULTS!. In addition, contrary to the impression that
statistics is a static science, the whole area of the analysis of models with fixed
and random effects is undergoing a revolution in the statistical world. Many
of the newer techniques are not discussed in textbooks and certainly not in the
published literature. Even experienced statisticians have difficulty in keeping
up with advances in this area.

For all but the simplest cases, seek help with models containing combinations
of fixed and random effects (often called mixed models).

The crucial first step in this model building is deciding which factors are
fixed and which factors are random effects.

A factor is a fixed effect if :

• the same levels would be used if the experiment were to be repeated;

• inference will be limited ONLY to the levels used in the experiment;

A factor is a random effect if:

• the levels were chosen at random from a larger set of levels

• new levels would be chosen if the experiment were to be repeated

• inference is about the entire set of potential levels - not just the levels
chosen in the experiment.

Typical fixed effects are factors such as gender, species, dose, chemical. Typ-
ical random effects are subject, locations, sites, animals.

9.1.7 Assumptions

Each and every statistical procedure makes a number assumptions about the
data that should be verified as the analysis proceeds. Some of these assumptions
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can be examined using the data at hand; other, often the most important can
only be assessed using the meta-data about the experiment. Fortunately, many
of the assumptions are identical to those seen in previous chapters. Please
consult previous chapters on details on how to verify the assumptions.

The most important assumptions to examine are:

• The analysis matches the design! Enough said in past chapters.

• Equal variation within treatment groups All the populations cor-
responding to treatments have equal variances. This can be checked by
looking at the sample standard deviations for each group (where each
group is formed by one of the treatment combinations). Unless the ratio
between the standard deviations is larger than about 5:1, this is not likely
a problem. Procedures are available for cases where the variances are
not equal in all groups. Fortunately, ANOVA is fairly robust to unequal
variances if the design is balanced.

Often you can anticipate an increase in the amount of chance variation
with an increase in the mean. For example, traps with an ineffective bait
will typically catch very few insects. The numbers caught may typically
range from 0 to under 10. By contrast, a highly effective bait will tend to
pull in more insects, but also with a greater range. Both the mean and
the standard deviation will tend to be larger. A transformation may be
called for (e.g. take logarithms of the response).

• No outliers There are no outliers or unusual points. Look at the side-
by-side dot plots formed by the treatment groups. Examine the residual
plots after the model is fit.

• Normality within each treatment group If the sample sizes are small
in each group, then you must further assume that each population has a
normal distribution. If the sample sizes are large in all groups, you are
saved by the ‘central limit theorem’. Normal probability plots within each
treatment group, or the residuals found after the model fitting procedure
can be examined. However, these likely have poor power when the sample
sizes are small and will detect minute differences when sample sizes are
large. Hence, they are often not very informative.

• Are the errors are independent? Another key assumption is that
experimental units are independent of each other. For example, the re-
sponse of one experimental animal does not affect the response of another
experimental animal.

c©2003 Carl James Schwarz 20



CHAPTER 9. TWO FACTOR DESIGNS - SINGLE-SIZED
EXPERIMENTAL UNITS - CR AND RCB DESIGNS

9.1.8 General comments

The key to a proper analysis of any experiment is recognizing the design that
was used and then specifying a statistical model that incorporates the sources
of variation in the design.

As you will see, this statistical model will have terms representing the main
effects and interactions of the factors and terms for every size of experimental
unit in the experiment. [The latter will become important when we analyze a
split-plot design.]

Once the model is specified, then the analysis of variance method (ANOVA)
partitions the total variation in the observed responses into sources - one for
each component representing a main effect or an interaction, and one for every
size of experimental unit. [Again, the latter will become more important in split-
plot designs.] For example, in the single factor CRD design, the ANOVA table
consisted of a line for total variation which is then split into sources representing
the contributions from the single factor (the treatment sum of squares), and a
contribution for experimental unit effects (the error sum of squares). In the
single factor RCB design, the ANOVA table introduced yet another entry for
the contribution from blocks (the block sum of squares).

As you will see later in this chapter, two factor design will have lines in
the ANOVA table corresponding to the interaction of the two factors and their
respective main effects.

Then, starting with interaction, you successively test the hypothesis of ‘no
effect’ from that source, i.e., you first test the hypothesis of no interaction effects,
and then, depending upon the results of the test, you may or may not wish to
test the main effects.

Rarely, if ever, are tests performed on experimental unit effects - it would
be quite rare to expect that the experimental units are exactly identical!

Again, the hypothesis tests only tell you that some effect exists - it doesn’t
tell you where the effect lies. You may need to explore the responses using
multiple comparison procedures and/or confidence intervals for the marginal
means or contrasts among means.

As before, you should always assess that your model adequately fits the data,
and as well before performing the experiment, determine if the sample size is
adequate to detect biologically important effects.

When reporting results in a paper or thesis, try not to overburden the reader -
no one is interested in the minute details - they want a broad picture - everything
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else can likely go into an appendix.

Be sure you carefully describe the experimental design so that some one can
verify how the experiment was done.

I would recommend that you ALWAYS show a profile-plot of the means
of the various treatment combinations along with approximate 95% confidence
intervals - this often tells the entire story.

In terms of the actual statistical computations, usually the F -statistic s are
reported along with the p-values, but rarely are all the ANOVA tables shown
except in appendices or simple tables. In this day of the WWW, the raw data
are often made available on a Web site in case someone else wishes to verify
your analysis.

9.2 Completely randomized design - all levels fixed

This is the simplest of the two-factor designs and serves as a template for the
analysis of more complex designs. As noted many times in this course, it is
important to match the analysis of the data with the way the data was collected.
Before attempting to analyze any experiment, the features of the experiment
should be examined carefully. In particular, the treatment, experimental unit,
and randomization structures; the presence or absence of balance; if the levels
of factors are fixed or random effects; and the assumptions implicitly made for
the design.

We will proceed by example.

9.2.1 Example - Effect of photo-period and temperature
on gonadosomatic index

The Mirogrex terrau-sanctae is a commercial sardine like fish found in the Sea of
Galilee. A study was conducted to determine the effect of light and temperature
on the gonadosomatic index (GSI), which is a measure of the growth of the ovary.
[It is the ratio of the gonad weight to the non-gonad weight.] Two photo-periods
– 14 hours of light, 10 hours of dark and 9 hours of light, 15 hours of dark – and
two temperature levels – 16 and 27 C – are used. In this way, the experimenter
can simulate both winter and summer conditions in the region.

Twenty females were collected in June. This group was randomly divided
into four subgroups - each of size 5. Each fish was placed in an individual tank,
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and received one of the four possible treatment combinations. At the end of 3
months, the GSI was measured.

Here are the raw data:

Temperature Photo-period
9 hours 14 hours

27 C 0.90 0.83
1.06 0.67
0.98 0.57
1.29 0.47
1.12 0.66

16 C 2.31 1.01
2.88 1.52
2.42 1.02
2.66 1.32
2.94 1.63

Design issues

There are two factors in this experiment - photo-period with 2 levels; and tem-
perature also with 2 levels.

What is the treatment structure?

All of the 4 possible treatment combinations (which are?) appear in this
study - hence it has a factorial treatment structure.

Now the purpose of this experiment was to simulate summer and winter
conditions - however, two of the treatment combinations seem unnatural. Why
were these treatment combinations used? How could you run this experiment
if you really were interested only in the summer and winter conditions? Is any
confounding taking place?

What is the experimental unit structure?

The experimental units were individual tanks and the observational units
were the individual fish within a tank. There is only one observation unit per
experimental unit.

There are a total of 20 fish each of which was placed in an individual tank.
This seems kind of wasteful - 20 tanks are needed as five of the tanks are needed
for each treatment to get the same photo-period and temperature treatment
combination. What is the problem if you used only 4 tanks with 5 fish in each
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tank? [Hint - what are the experimental and observation units - and is this
pseudo-replication?]

What is the randomization structure?

The article was not very clear, but the treatments appear to be completely
randomly assigned to the tanks, etc.

Balance

The design is balanced as an equal number of replicates was performed for
teach treatment combination.

Fixed or random factors?

Are the factors to be considered fixed effects? In this case, you would use
exactly the same levels of both factors - therefore both of the factors are fixed
effects.

Preliminary summary statistics

Before doing any formal analyses, it is always advisable to do some preliminary
plots and compute some simple summary statistics - even if these don’t fully
tell the whole story. Here are some simple plots and summary statistics [Note
that the above data must be converted to a data file in standard format with
the appropriate scale of measurements.
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Temperature Photo-period GSI
27C 09h 0.90
27C 09h 1.06
27C 09h 0.98
27C 09h 1.29
27C 09h 1.12
16C 09h 2.31
16C 09h 2.88
16C 09h 2.42
16C 09h 2.66
16C 09h 2.94
27C 14h 0.83
27C 14h 0.67
27C 14h 0.57
27C 14h 0.47
27C 14h 0.66
16C 14h 1.01
16C 14h 1.52
16C 14h 1.02
16C 14h 1.32
16C 14h 1.63

Sometimes it is easier to create a ‘pseudo-factor’ consisting of the actual
treatment levels to make simple plots and to find simple summary statistics.
[Illustrate how to do this in JMP - a similar procedure would be done in SAS].
Because this is a completely randomized design, there is no conceptual difference
between a two factor design (each with 2 levels) and a single factor design with
4 levels. In more complex designs, this is not true.

c©2003 Carl James Schwarz 25



9.2. COMPLETELY RANDOMIZED DESIGN - ALL LEVELS FIXED

Because the overall design is a CRD, the standard errors reported are sen-
sible. If a blocking factor was available, the Analyze->Fit Y-by-X platform
would also have computed proper standard errors after block centering. In all
other cases, the reported standard errors would not be sensible as the assumed
design in the Analyze->Fit Y-by-X platform (an RCB or CRD) didn’t match
the actual design.

Hmmm.. the standard deviation seems to show that the variability at 27C is
about 1/2 of that at 16C. This is an interesting effect in its own right - however,
the change in standard deviation is small enough that it shouldn’t be too much
of a concern for this problem. [As a rough rule of thumb, unless the ratio of
standard deviations from small samples is on the order of at least 3 to 5x times
different, there is likely nothing to worry about.]

The design is balanced - every treatment has the same number of replications
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- this makes the analysis easier. Also every treatment combination has some
data - missing cells where some cells have no data are a REALLY MESSY
PROBLEM. Most statisticians even have difficulty in analyzing such experi-
ments - beware!

You should also draw a preliminary profile plot to get a sense of the level of
Interaction, if any. This can be done by hand or using Excel. If you are using
JMP, you must actually fit the model first to get the interaction profile plot
which seems backwards.

It appears that there may be a bit of interaction between the two factors - the
lines are not parallel. It would be easier to assess interaction if the approximate
95% c.i. were drawn for each mean - why most packages don’t do this is beyond
me.

Looking at the profile plot above, what is the effect of photo-period at 16C?
at 27C? What is the effect of temperature at 9 h? at 14 h?

The statistical model

The statistical model for any design has terms corresponding to the treatment,
experimental unit, and randomization structure. Fortunately, in simple designs,
the latter two are often implicit and do NOT have to be specified by the analyst.

Any factorial treatment structure will have terms corresponding to interac-
tions and main effects.

In cases where there is only one size of experimental unit, and no subsampling
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or pseudo-replication, and no blocking, then it is not necessary to specify any
term for experimental unit effects (this corresponds to the MSE line in the
ANOVA table).

In cases of complete randomization, there is no need to specify anything
further in the model. In cases of non-randomization (e.g. repeated measurement
over time, you might specify the covariance structure of the observations).

This gives a model often written as:

GSI = temp photo temp ∗ photo

What the statistical model says is that we recognize that the observed GSI re-
sponse values (left of equals sign) are not all the same. What are the various
sources of variation in the observed responses? These appear to the right of the
equal sign. Well, we expect some differences due to the main effects of temper-
ature, some differences due to the main effects of photo-period, some differences
possibly caused by an interaction between photo-period and temperature. Note
that the ‘*’ does NOT imply multiplication, but rather an interaction between
two factors. The terms can be written in any order.

There are NO terms representing experimental units (this implies there is
a single size of experimental unit), nor any terms representing randomization
effects (complete randomization is assumed).

Fitting the model

In order to fit this model, we must use the Analyze->Fit Model platform of
JMP and complete the dialogue entries as shown below.
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The response variable, GSI, is entered in the Y box. It must be continuous
(interval or ratio scales).

Every term in the statistical model must have a corresponding term in the
MODEL EFFECTS box. The main effects are entered by selecting each variable
in turn and then pressing the ADD button. Interactions are entered by selecting
BOTH variables simultaneously, and then pressing the CROSS button. The
order of effects in the EFFECTS box is not important - it will give output in a
slight different order, but no substantive changes. 5

5You can also enter a factorial structure by jointly selecting the two factors and using the
Macro button to select a factorial structure
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Some of the other buttons are for special cases such as NO INTERCEPT (it
is very, very rare to check this box), or if you don’t with standard least squares,
etc. These are beyond the scope of this course.

The RUN MODEL button, then fits the model to the data.

Hypothesis testing and estimation

The output from the Fit-Model platform is voluminous. It is divided into sec-
tions corresponding to the whole model (in the left most column) and then
sections corresponding to each effect in the model.

Here are the ANOVA tables from fitting the model. In JMP the various
pieces are all over the place - you may wish to sit at a terminal to reproduce
the output below. Most packages will give similar output.

The first output below is not very useful - it is a Whole Model test which
simply examines if there are any statistically significant effects anywhere in the
experiment. It is rarely useful.

The second table below breaks down the Model line in the whole model test
into the components for every term in the model. Some packages give you a
choice of effect tests. For example, SAS will print out a Type I, II, and III tests
- in balanced data these will always be the same. In unbalanced data, these
tests will have different results - which test is the ‘correct’ test is still an item
of controversy among statisticians and can (and do) results in fist-fights among
the various camps (and you thought statistics was dull!)
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Start the hypothesis testing with the most complicated effects (usually in-
teractions) and work towards simpler terms (main effects).

In this case, we start with the test for no interaction effects.

Our null hypothesis is
H: no interaction among photo-period and temperature in their effects on the
mean GSI level
A: some interaction among photo-period and temperature in their effects on the
mean GSI level.

Our test statistic is F=21.2, the p-value (.0003) is very small. There is very
strong evidence of an interaction among the two factors in their effects on the
mean GSI level. This is not surprising, the profile plots showed that the lines
didn’t appear to be too parallel.

What does a statistically significant interaction mean? It implies that the
effect of temperature upon the mean GSI is different at the the various photo-
period levels. Similarly, the effect of photo-period upon the mean GSI index is
different at the two temperature levels.

If you detect an interaction, it usually doesn’t make much sense to continue
along to test main effects because, by definition, these are not consistent - e.g.
the effect of temperature is different at the two photo-periods.

What to do if an interaction is present?

There is no single way to proceed after this point. Some authors suggest
that you now break up the data into two mini- experiments and analyze each
separately. For example, analyze each photo-period separately and analyze each
temperature level separately to estimate the effects at each of the various levels.
As these mini-experiments are now simply single-factor CRDs (in this case two-
sample t-test) all the machinery that we had before can be brought into bear.
The disadvantage of this approach is that you forgo pooling of the error variances
from all four groups.

The output from JMP provides additional information about the interaction.
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In the column corresponding to the interaction effect, estimates of the means
corresponding to each combination of levels, and estimates of the differences
between pairs of means (adjusted for multiple comparisons are available).
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The LSMeans estimates are equal to the raw sample means – this is will be
true ONLY in balanced data. In the case of unbalanced data (see later), the
LSMEANS seem like a sensible way to estimate marginal means.

The above output can be used to see which means appear to differ from each
other.

This is also where the profile plot shown earlier is produced - it is a pity that
the plot doesn’t show the confidence intervals.
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Alternately you can return to the pseudo-factors that you defined earlier.
This again converts the experiment from a two-factor CRD to a single factor
CRD with 4 levels. This approach is only valid because the original design is
CRD.

Below is the result of such an analysis:

The ANOVA table is identical to Overall Model ANOVA table earlier. Here
are the estimated means for each treatment and the estimated standard errors
– identical to the above analysis.

We perform a multiple comparison procedure ( also refer to the comparison
circle above) which gives the same results as found previously.
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What can you conclude from these analyses? In particular, can you see why
interaction was detected? Which means appear to be different from the others?

Analysis using SAS

Here is a link to a sample SAS program6 and output7. You should find that
most of what we found above also appears somewhere in the SAS output.

9.2.2 Example - Effect of gender and species upon chem-
ical uptake

Several persistent chemicals accumulate up the food chain. Different species
may differ in the amount of of chemicals accumulated because of different prey
availability or other factors. Because of different behavior, the accumulated
amount may also vary by gender.

A survey was conducted to investigate how the amount of PCBs varied
among three different species of fish in Nunavut (the new Canadian territory
just to east of the Restofit and just north of Ulofit). Samples were taken from
four fish of each sex and species and liver PCB levels (ppm) were measured.

Here are the raw data:
6../MyPrograms/gsi.sas
7../MyPrograms/gsi.lst
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PCB sex Species
21.5 m sp1
19.6 m sp1
20.9 m sp1
22.8 m sp1
14.5 m sp2
17.4 m sp2
15.0 m sp2
17.8 m sp2
16.0 m sp3
20.3 m sp3
18.5 m sp3
19.3 m sp3
14.8 f sp1
15.6 f sp1
13.5 f sp1
16.4 f sp1
12.1 f sp2
11.4 f sp2
12.7 f sp2
14.5 f sp2
14.4 f sp3
14.7 f sp3
13.8 f sp3
12.0 f sp3

Design issues

There are two factors in this experiment - sex with 2 levels and species with 3
levels.

What is the treatment structure? All of the 6 possible treatment combi-
nations (which are?) appear in this study - hence it has a factorial treatment
structure.

What is the experimental unit structure? Hmmm . . . an interesting question.
In observational studies it is often not clear what are the experimental and
observational units. For example, is this like a ‘fish tank’ study where all the
fish in a particular location are subjected to the same treatments (i.e., deposited
PCBs). Or is each fish subjected to its own experience?

This is very common problem in observation studies and you should be very
careful about the dangers of pseudo-replication that we explored earlier.
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For now, lets treat the experimental units as individual fish and the obser-
vational units as the individual fish. There is only one observation unit per
experimental unit.

Finally, what is the randomization structure? Again, this is often not clear
in observational studies. First, it is quite impossible to randomly assign sex or
species to fish. You must view the randomization as arising from the selection
process. Are these fish randomly selected from the entire population of fish of
each species and sex? Or is the sample a convenience sample - i.e., the fish
closest to the research station that are easiest to catch?

In any observational study, you must be careful that the units measured are
a proper random sample from the relevant populations.

Are the factors to be considered fixed effects? Does it seem reasonable that
if you were to repeat the survey, you would select the same sexes and species?
In this case, you would use exactly the same levels of both factors - they are
fixed-effects.

Hence, this experiment appears to satisfy the requirements for a two-factor
fixed-effects CRD. In particular, the “randomization” was to individual experi-
mental units and the observational unit is the same as the experimental unit.

Preliminary summary statistics

Again, create some simple summary statistics. We will create a ‘pseudo-factor’
in JMP so that summary statistics can be computed on each group.

Be sure to specify that sex, species, and the pseudo-factor treatment are
nominal scaled variables, while pcb is a continuous variable.
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The standard deviations are approximately equal in all the groups. There
don’t appear to be any outliers or unusual points. In general the males seem to
have higher levels of PCBs than the females, but there doesn’t seem to be much
of a difference among the mean PCB levels in the species.

The design is balanced - every treatment has the same number of replications
- this makes life easier. Every treatment combination has some data - again it
makes our analysis task easier.

We draw the profile plots. This can be done by hand or using Excel. If
you are using JMP, you must actually fit the model first to get the interaction
profile plot which seems kind of backwards.
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The lines appear to be roughly parallel - so we expect that there may not
be an interaction between the two factors.

Looking at the profile plot - what is the effect of gender? What is the effect
of species?

The statistical model

The statistical model is written as:

PCB = gender species gender ∗ species

What does this statistical model tell us about the sources of variation in the
observed data?

Fitting the model

We use the Analyze->Fit Model platform of JMP and complete the dialogue
entries as in the previous example (we won’t show it for this example).

Here are the ANOVA tables from fitting the model.
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The Whole Model test simply examines if there are any statistically sig-
nificant effects anywhere in the experiment. It is rarely useful.

The above table breaks down the whole model test according to the various
terms in the model.

Start the hypothesis testing with the most complicated terms and work
towards simpler terms.

The first null hypothesis is
H: no interaction between gender and species in their effect on the mean PCB
levels
A: some interaction among gender and species in their effect on the mean PCB
levels.

The test statistic is F=1.6313, the p-value (.2233) is not very small. Hence
there is no evidence of an interaction in the effects of gender and species upon
the mean PCB levels. This is not too surprising as the lines are fairly parallel.
What does this mean in terms of the original responses, i.e., what does no
interaction say about the differences in the mean PCB levels among the genders
or among the species.

If interaction was not statistically significant, then the analysis continues
along to examine the main effects. These can be examined in any order.

Examining main effects - gender.

What are the null and alternate hypotheses? The ANOVA table gives
F=65.6 and the p-value < 0.0001 - very small. There is very strong evidence of
a difference in the mean PCB levels between the two genders.

Because there are only two levels of gender, no multiple comparison proce-
dure is needed. We would like estimates of the marginal means i.e., estimates of
the mean PCB levels for each gender averaged over species, and, if possible, es-
timates of the mean difference in PCB levels between the two genders averaged
over species:
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We look at the section of the JMP output that deals with Gender effects to
find the table of marginal means:

We can compute approximate 95% confidence intervals from the mean and
standard error for each marginal mean.

In multifactor designs, it may not be very useful to estimate the marginal
means. Does it make sense to take an average over the three species with equal
weight given to each species? If one species is more abundant than another
species, perhaps it should be given a greater weight?

Estimates of the difference are always useful. These are obtained from the
pop-down menu item for a multiple comparison. [As there are only two levels in
this factor, it doesn’t matter which multiple comparison procedure is chosen.]

The estimated difference is -4.8 ppm (i.e., females have lower mean PCB
levels on average than males) with a se of 0.5933. A 95% confidence interval for
the difference is also given.

Main effects should ONLY be examined if the interaction effects are not
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statistically significant or if the non-parallelism is not very large.

Examining main effects - species

What are the null and alternate hypotheses?

The ANOVA table gives F=13.1 and a p-value of 0.0003 - very small. There
is very strong evidence of a difference in the mean PCB levels among the three
species.

Once again, the test just tells us that there is evidence of a difference in the
means, but doesn’t tell us which mean appears to be different. First examine
the estimates of the marginal means:

We can compute approximate 95% confidence intervals from the mean and
standard error for each marginal mean. What does this appear to show us?
Again, is it sensible to “average” over the two sexes? As most species have an
equal sex ratio, this is likely a sensible thing to do.

How about the estimate of the differences in the mean PCB levels among
the species? The multiple comparisons can again be selected:
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A profile plot of the means can also be obtained using the pop-down menu.

Analysis using SAS

Here is a link to sample SAS program8 and its output9. You should find that
most of what we found above also appears somewhere in the SAS output - except
for power calculations which are not easily done in SAS except under INSIGHT.

9.2.3 Power and sample size

The estimation of appropriate sample sizes for an experiment proceeds in much
the same way as for a single factor CRD.

Power and sample size determination for each of the main effects proceed in
much the same way as for single factor designs. The DOE->PowerSampleSize
platform is again used. If there are only two levels for a factor, you can use the

8http:../MyPrograms/pcb.sas
9http:../MyPrograms/pcb.lst
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2-means option and you specify the difference to be detected. If there are two or
more levels, you can use the k-means option and specify a set of means such that
the largest and smallest values differ by the biologically significant difference and
the other means are located midway between the upper and lower values. The
estimate of σ can be obtained from

√
MSE in the ANOVA tables, from a pilot

study, or from expert opinion. The routine will then return the TOTAL sample
size which must be split over ALL treatment combinations.

For example, consider a two factor experiment with Factor A at two levels
and Factor B at three levels. If you find that the total sample size for detecting
differences among the means for Factor A is 60, then this must be divided among
the 2×3 = 6 treatment combinations which implies a sample size of 10 for each
treatment combinations.

As well, you will have to compute a total sample size for each main effect.
These may not be consistent with each other, e.g., the total sample size to
detect the effects of Factor A may be 60, while the total sample size to detect
the effects of Factor B may be 90. If possible, use the larger sample size to
ensure adequate power for all factors.

For example, consider the PCB example. Here the estimate of σ is about√
2.11 = 1.45. The DOE->PowerSampleSize platform is used to estimate the

power and sample size to detect a difference of about 3 ppm in the mean PCB
levels for the two genders. This gives a TOTAL sample size of about 13, which
when split over the 6 treatment combinations gives about 2 per species-gender
combination. On the other hand, when the power-sample size platform is used
to estimate the power and sample size to detect a difference of about 2 in the
mean PCB levels among the three species, you find that a total sample size
of about 34 is needed, which is about 6 per species-gender combination. [You
will have to specify a configuration for the three means - the actual values used
are unimportant as long as the difference is 2. I used 0, 3, and 2 ppm]. The
two objectives are in conflict so either the larger sample size should be used, or
the detectable difference should be adjusted for differences in the means among
species.

It is possible to determine sample size and power to detect interactions - this
is rarely done and so will not be explored further.

It is not necessary to have the sample sizes equal in all treatment groups,
but it can be shown that the ‘power’ of the test is maximized when the sample
sizes are equal for all treatment combinations.
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9.2.4 Unbalanced data - Introduction

Unbalanced data can take many forms. Some of the forms are easy to analyze,
some are difficult.

Here are the some illustrations of the common replication patterns that you
will run into. In all cases there are 2 levels of Factor A and three levels of Factor
B and an ‘x’ represents a replicate.

• Equal replications per cell

Factor B
b1 b2 b3

+-----+-----+-----+
Factor A a1 | xx | xx | xx |

+-----+-----+-----+
a2 | xx | xx | xx |

+-----+-----+-----+

This is the easiest to deal with and two examples were given earlier in the
notes.

• Unequal replications per cell, but replicates in every cell

Factor B
b1 b2 b3

+-----+-----+-----+
Factor A a1 | xxx | xx | xxx |

+-----+-----+-----+
a2 | xx | xx | xxxx|

+-----+-----+-----+

In this case, all cell have some data, but the number of replicates differs
among cells and every cell has 2 or more replicates. The multiple repli-
cates within a cell are needed to estimate the MSE row in the ANOVA
table. An example of an analysis of this type of data will be given below.
Because each cell has replicates, it is possible to check that the varia-
tion is roughly equal in all treatment groups. This type of unbalance can
be analyzed “easily” if the computer package has been programmed cor-
rectly. BEWARE: some packages (e.g. Excel) will give WRONG
answers!
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• Unequal replications per cell, with some cells having only a single
observation

Factor B
b1 b2 b3

+-----+-----+-----+
Factor A a1 | x | xx | xxx |

+-----+-----+-----+
a2 | xx | x | xx |

+-----+-----+-----+

In this case, all cell have some data, but the number of replicates differs
among cells and some cells have only a single observation. Theoretically,
there is no difference in the analysis of this experiment from the previous
example. However, in this experiment, you must assume that the variabil-
ity in the cells with replicates is an accurate representation of that in cells
with only a single observation.

• One observation per cell

Factor B
b1 b2 b3

+-----+-----+-----+
Factor A a1 | x | x | x |

+-----+-----+-----+
a2 | x | x | x |

+-----+-----+-----+

If you only have a single observation per cell, it is impossible to test
for interaction effects. [Technically, the design has insufficient degrees of
freedom for error.] We won’t discuss how to analyze this type of data
in this course, but basically you MUST ASSUME that no interaction
exists, and fit a model without any interaction terms in the model. Only
main effects can be tested.
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• One or more cells completely empty

Factor B
b1 b2 b3

+-----+-----+-----+
Factor A a1 | xx | xx | |

+-----+-----+-----+
a2 | xx | xx | xx |

+-----+-----+-----+

SEEK HELP! Most computer packages will give you completely WRONG
results! This is tough problem. Now having said this, one simple solution
to this problem (if it only occurs in one cell of the design), is to drop
the column and analyze the remaining data as a two-factor, each at two
levels. In the above example, level b3 would be dropped from the experi-
ment. However if there are many missing cells, you may find that you are
dropping most of your data!

The analysis of an unbalanced design with all cells having at least one ob-
servation and some cells having at least two replicates is discussed in:

Shaw, R.G. and Mitchell-Olds, T. (1993).
ANOVA for unbalanced data:an overview.
Ecology, 74, 1638-1645.

This is available in the library or from JSTOR by following this link10

[We will NOT be discussing this article in class and it is not part of the
course.]

9.2.5 Unbalanced data - Example - Energy consumption
in pocket mice

Here is an example showing some of the problems that you may run into when
analyzing unbalanced data.

French (1976, Selection of high temperature for hibernation by the pocket
mouse: Ecological advantages and energetic consequences Ecology, 57, 185-191)

10http://links.jstor.org/sici?sici=0012-9658%28199309%2974%3A6%3C1638%3AAFUDAO%3E2.0.CO%3B2-
G
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collected the following data on the energy utilization of the pocket mouse (Per-
ognathus longimembris) during hibernation at different temperatures:

Restricted Food Ad libitum food
8C 18C 8C 18C

62.69 72.60 95.73 101.19
54.07 70.97 63.95 76.88
65.73 74.32 144.30 74.08
62.98 53.02 144.30 81.40

46.22 66.58
59.10 84.38
61.79 118.95
61.89 118.95
62.50

All readings are in kcal/g.

Design issues

What are the factors in this experiment? Their levels? What is the response
variable? Is this an “experiment” or an observational study? If the latter, what
is the role of randomization in this study? What is the treatment structure
in this experiment? What is the experimental unit structure? What are the
experimental and observation units? Why is the design unbalanced? What
unbalanced the design, or did it occur “by chance”? What is the randomization
structure?

Are the factors to be considered fixed effects? Hence, does this experiment
appear to satisfy the requirements for a two-factor fixed-effects CRD?

Preliminary summary statistics

Create some simple summary statistics. We will create a ‘pseudo-factor’ in JMP
so that we can get the statistics on each group and make a simple plot.
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There doesn’t appear to be any difference in the mean energy usage between
the two temperature levels under the restricted food diet, but both appear to
be less than the mean energy usage from the ad libitum groups.

The standard deviations appear to be quite different! This is very worri-
some - the ANOVA method is fairly robust to unequal variances provided the
sample sizes are equal in all groups. I would proceed with caution in the
subsequent analysis!

The design is unbalanced (the sample sizes are not equal in all groups).

The profile plot is below:
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The profile plot shows that some interaction may be present. Indeed, this
is not unexpected given the earlier plot that showed no difference in the means
between the two temperatures under the restricted diet but some apparent dif-
ferences under the ad libitum diet. Because of the strong evidence of differential
standard deviations among the groups, we may not detect this effect.

The statistical model

The model for this study is:

energy = food temp food ∗ temp

What does this statistical model tell us about the sources of variation in the
observed data?

Fitting the model

We use the Analyze->Fit Model platform of JMP and complete the dialogue
entries as in the previous example (we won’t show it for this example). Again
be sure that all factors have nominal scale and that the response variable has
continuous scale.

Hypothesis testing and estimation

Here are the ANOVA tables from fitting the model.
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The Whole Model test above simply examines if there are any statistically
significant effects anywhere in the experiment. It is rarely useful but does tell
us that we should proceed further and investigate the various effects.

This table breaks down the whole model test according to the various terms
in the model.

This is where the unbalance causes some problems. There is still contro-
versy among statisticians on exactly how to compute the sums of squares and
F -statistic s for unbalanced data. A majority of us believe that “Type III”
or “marginal” sums-of-squares are appropriate (which are presented in JMP).
Arguments can be made for “Type II” or “model effect” sums-of-squares (not
presented in JMP but present in SAS). We won’t delve deeper into this contro-
versy - it has been known to provoke heated-debates and “knuckle-sandwiches”
among statisticians (and you thought that we were a dull lot!).

As in the balanced case, start the hypothesis testing with the most com-
plicated terms and work towards simpler terms. In this case, start with the
interaction effects.

Our null hypothesis is
H: no interaction among the effects of food and temperature on the mean re-
sponse
A: some interaction among the effects of food and temperature on the mean
response.

Our test statistic is F=1.80, the p-value (.1939) is not very small. Hence there
is no evidence of an interaction among the effects of food and temperature on the
mean response. This is somewhat surprising given the profile plots constructed
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earlier - it may be an artifact of the unequal standard deviations among the
groups or because our sample sizes are not very large.

Examining main effects - temperature.

The F -statistic is 1.47, the p-value is 0.2395. There is no evidence of a
difference among the mean energy requirements at the two temperature levels.

This would be confirmed by looking at the estimated marginal means and
the estimated difference in the means:

Here is where the unbalance again causes some difficulty in the analysis.
Notice that the LSMeans no longer equal the raw means. In unbalanced data,
simple means across the factors may be affected by unequal sample sizes. The
simple mean for the 8C levels would include 4 mice at the restricted diet and
4 mice at the ad libitum diet - an equal split. However, the simple mean for
the 18C diet would include 9 mice at the restricted diet and 10 mice under
the ad libitum diet - no longer an equal weighting among the two diets. The
LSMeans are computed by giving equal weights to each of the two means from
the two diets. There is no universal agreement upon this (and you thought that
Statistics was so cut and dried) but, in most situations, the least square means
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seem preferable.

Examining main effects - food level.

The ANOVA table gives F=21.2 and the p-value is 0.0002 - very small. There
is very strong evidence of a difference in the mean energy requirements between
the two food levels. Because we only have two levels, it is obvious where the
difference lies. But we find the Least Square Means and estimated differences
for the food levels:

Again, notice that the least square means are different than the raw means
which are shown in the last column. This will usually happen when the design is
unbalanced. The least square means give equal weight to the two temperature
levels while the raw means weight the two temperature levels according to the
observed sample sizes.

Power and sample size

We did detect an effect in the mean between the two food levels but not between
the means for the two temperature levels.
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The DOE->PowerSampleSize can be used to assess the power of this de-
sign and determine what sample size would be needed to be 80% confident of
detecting such a difference in the future.

Analysis using SAS

Here are links to a sample SAS program11 and its output12 You should find
that most of what we found above also appears somewhere in the SAS output
- except for power calculations which are not easily done in SAS except under
INSIGHT.

Adjusting for unequal variances?

This is beyond the scope of this course, but a formal test for unequal variances
showed clear evidence of a problem. A more exact test, fortunately, came to
similar conclusions, but the estimated standard error of the difference is slightly
different.

9.3 Completely randomized design random and
fixed effects

As noted below, the analysis of these mixed models is fraught with difficulty
and great care must be taken. In many cases, computer packages may give
wrong or mis-leading results without any warning!

Recall the criteria for determining if a factor is a fixed or random effect. A
factor is a fixed effect if :

• the same levels would be used if the experiment were to be repeated;

• inference will be limited ONLY to the levels used in the experiment;

A factor is a random effect if:

• the levels were chosen at random from a larger set of levels
11http:../MyPrograms/mouse.sas
12http:../MyPrograms/mouse.lst
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• new levels would be chosen if the experiment were to be repeated

• inference is about the entire set of potential levels - not just the levels
chosen in the experiment.

9.3.1 Example - Rancid fat - Fixed and random effects

A study was conducted to investigate the effects of irradiating fat with gamma
radiation to prevent it from going rancid. [This is a proposed treatment for many
foods to kill many of the bacteria which cause foods to spoil. The promoters
of this treatment claim that it doesn’t affect taste or nutrition, and is perfectly
safe.]

This experiment was a collaboration between two laboratories. In this ex-
periment, 12 batches of fat were obtained and split between the 2 laboratories.
Six of the samples were irradiated at each laboratory. In each lab, 6 rats (all
aged 30 to 34 days) were obtained, and six rats were assigned at random to each
of the fat groups.

The rats were allowed to feed ad libitum and the total consumption of fat
(grams) was noted over 73 days.

Here are the raw data:

Consumption Fat type Laboratory
709 control 1
679 control 1
699 control 1
562 treated 1
518 treated 1
496 treated 1
657 control 2
594 control 2
677 control 2
508 treated 2
505 treated 2
539 treated 2

Design issues

What are the factors in this experiment? Their levels? What is the response
variable? What is the treatment structure in this experiment?
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Now consider the two factors in more detail. In this case, the treatment is
clearly of interest - we really want to know if the mean amount consumed is the
same - presumably if it is, then the two types of fat are equally palatable (at
least to rats). This will be a fixed effect.

However, the laboratory factor is quite different. We likely are not interested
in a specific comparison between these two laboratories - rather we can visualize
that these two laboratories were selected at random from all possible laboratories
and we really want to know if there is any evidence that the results would
change if new laboratories were chosen. As well, we may decide to repeat the
experiment using a different set of laboratories in the future, but we would
keep the treatment of the fats fixed. For this reason, we would consider the
laboratories factor as a random effect.

What is the experimental unit structure? What are the experimental and
observation units? In this case, the experimental unit is a rat and the observa-
tion unit is a rat.

What is the randomization structure? Here there are 12 separate batches of
fat, randomly assigned to the two treatment groups and to the two laboratories
and to the rats.

Notice how the experiment would differ if there were only 2 batches of fat,
one of which was assigned to lab 1 and the other to lab 2. In this case, there
would be complete confounding of batches of fat with laboratories. As well,
there would not be a complete randomization, and the design would be more
akin to a relative of a blocked design. I can’t emphasize too strongly the
importance of carefully specifying how an experiment is done before
trying to analyze the results of the experiment.

Hence, this experiment appears to satisfy the requirements for a two-factor
CRD, albeit with one factor fixed and the other factor random.

Preliminary summary statistics

Create some simple summary statistics. We will create a ‘pseudo-factor’ in JMP
so that we can get the statistics on each group and make a simple plot.
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The rats eating treated fat appear to consume less, on average, than the rats
eating untreated fat. There doesn’t appear to be much of a difference in the
means between the two laboratories.

The standard deviations appear to be roughly equal in all groups. [Given
that the total sample size is 3 in each group, it is very difficult to detect any
real differences in the standard deviations.]

The design is balanced (the sample sizes are equal in all groups).

The profile plot is below:
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The lines don’t appear to be parallel so there may be some evidence of an
interaction - however, given that there are only 3 observations per group the
precision of each mean is terrible and the lines could, in fact, be parallel.

The statistical model

The model for this study is constructed in a similar fashion as before. There will
be terms for each main effect of the factors and their interaction. Because there
is only one size of experimental unit, it is not necessary to specify anything.
Similarly, complete randomization is implicitly assumed. The overall model is:

consume = radiation lab(R) radiation ∗ lab(R)

where the (R) indicates a random effect.

Because we believe that one of the factors is a random effect we add a further
two assumptions to the model. For each random effect and any interaction
involving a random effect, we assume that these are normally distributed with
mean 0 and an associated variance component.

So in this model, there are three sources of random variation - experimental
units (the rats), the laboratories, and the interaction between the laboratories
and the treatments.

Fitting the model

We use the Analyze->Fit Model platform of JMP and complete the dialogue
entries as shown below. The factors must be specified as nominal scale; the
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response variable as a continuous scale variable. The effects and their interaction
are entered as before using the ADD and CROSS buttons. The & random
attribute is added by clicking on a term in the model effects box and using
the Attribute pop-down menu to select a random effect. DON’T FORGET
TO SPECIFY THE RANDOM EFFECTS! using the Effect Attributes
pop-up menu. All interactions that include a random effect must also
be specified as random effects.

Notice that the METHOD selector has two options: REML (Restricted max-
imum likelihood estimation) which is a newly developed method for random and
mixed models; and EMS - which is likely the method shown in textbooks. The
two methods will give similar results in many cases, but the REML method is
more comprehensive, more flexible, and less prone to error on the part of the
analyst.

Hypothesis testing and estimation

The summary ANOVA table looks very similar to what we’ve seen before
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The Whole Model test simply examines if there are any statistically sig-
nificant effects anywhere in the experiment. It is rarely useful but does tell us
that we should proceed further and investigate the various effects.

The effect tests for the individual effects in the model are constructed dif-
ferently and the output looks different:

CAUTION- This is where some packages make mistakes. For ex-
ample, PROC GLM in SAS always tests everything against MSE unless you
explicitly state otherwise. This is not correct. JMP also includes adjustments
(called shrinking) for random effects that are just starting to make their way into
the mainstream statistical packages. What do they test? These tests are valid
tests based on the Henderson (1984) model framework, but for a statistical hy-
pothesis, that is not interesting: that the effect sizes of the levels you randomly
drew from the population happened to all be zero. In this case, these test if
these particular laboratories have any effect upon the mean response. However,
because you are interested in the population of levels, rather than just in the
levels you happened to draw, you should be looking at the variance component
instead, with its confidence interval. This is beyond the scope of this course.
These shrunken effect tests on random effects will always be smaller and less
significant than the old style tests often found in textbooks.

We again start hypothesis testing with the most complicated terms and work
towards simpler terms.

In this example, we start with the interaction effects.
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Our null hypothesis is
H: no interaction among the effects of treatment and these particular laborato-
ries in the mean amount eaten
A: some interaction among the effects of treatment and these particular labora-
tories in the mean amount eaten.

Our test statistic is F=0.976, the p-value (.352) is not very small. Hence
there is no evidence of an interaction among the effects of treatment and these
particular laboratories on the mean amount eaten.

This is somewhat surprising given the profile plots constructed earlier - how-
ever, I suspect that the poor precision of each mean (after all there are only three
observations in each group) means it is difficult to detect any interaction.

Examining main effects - laboratories

We find the F -statistic to be 0.838 with a p-value of 0.528. Now because
this is a random effect, we are saying that there is no evidence of a difference in
the mean amount consumed among these particular laboratories.

It is not customary to examine the actual LSMeans for random effects.
Rather, interest lies in an estimate of the variation among labs - this is not
covered in this course. [As noted earlier, this information is available from the
REML Variance Component Estimates.]

Examining main effects - treatment

The ANOVA table gives F=43.1 and the p-value 0.0962 - some evidence of
a difference in the mean consumption between the two treatment of the fat.

As this was a fixed effect, it makes sense to examine the LSMeans:

MANY PACKAGES give wrong SEs for marginal means when
random effects are present. JMP v3.0 had problems; these were corrected
in v4.0 and later. SAS’s PROC GLM computes the se incorrectly; but computes
the proper se in PROC Mixed.

Estimates of the difference, its se, and confidence intervals are found in the
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usual fashion.

Notice that here the results are a bit counterintuitive. The estimated dif-
ference is about 150 g with a standard error of about 23 g. The usual rule of
estimate ± 2 standard errors would seem to give a confidence interval that does
not cover zero which is contradictory to the p-value of 0.09 seen earlier. This
is a case where the usual “rule-of-thumb” doesn’t hold - the problem is that
you really only have a sample size of 2 - the two laboratories! The reported
confidence interval is correct and shows that the estimated effect may be zero.
13

MANY PACKAGES BOTCH THIS COMPUTATION. You must
be very, very careful that your package does this computation correctly - even
SAS’s PROC GLM does this wrong (but does it correctly in PROC MIXED).

This all goes to prove that ‘To Err is Human, but it really takes a computer
to foul things up.’

13Earlier versions of JMP computed incorrect confidence intervals. The above output is
from JMP 4.0.5 or higher 5.0 and is correct.
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Analysis using SAS

Here is a link to a sample SAS program14 and output15. You should find that
most of what we found above also appears somewhere in the SAS output. Note
that because some of the output from GLM is NOT CORRECT when you have
multiple error terms, you should be using PROC MIXED to obtain correct
output.

9.3.2 Example - Mosquito repellent - Fixed and random
effects

[Based upon a real study conducted at the University of Manitoba but using
simulated data.]. Biting insects can be a real pest and a health hazard - e.g.
malaria and equine encephilitus are serious diseases transmitted by mosquitoes.
What is the best method of deterring these pesky critters from biting?

There are a number of insect repellents available on the market place. Some
use the chemical DEET which is quite effective but many people are reluctant to
use these sprays because they are quite ‘strong’ - e.g., many sprays containing
DEET will soften paint. As an alternative, there is a strong ‘urban legend’
about an Avon (a perfume and toiletry company) product called ‘Skin so soft’
that many people claim is also an effective repellent.

To investigate these claims, twenty four volunteers were recruited. These
were randomly assigned to 3 groups of 8 people which then went to 3 locations
on the University Campus. At each location, half of the volunteers spread a
DEET product on their right arm; the other half used the Avon product on
their right arm. Each subject stood at least 10 m from any other subject. Then
the subjects let mosquitos bite their exposed arm, and after 15 minutes, the
total number and severity of the bites was scored using a standard scale for
such studies (how some one came up this scale I can only hazard a guess!). The
higher the score, the worse the biting experience.

Here are the raw data:
14../MyPrograms/rancidfat.sas
15../MyPrograms/rancidfat.lst
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score product location
21 deet 1
19 deet 1
20 deet 1
22 deet 1
14 sss 1
15 sss 1
13 sss 1
16 sss 1
14 deet 2
17 deet 2
15 deet 2
17 deet 2
12 sss 2
11 sss 2
12 sss 2
14 sss 2
16 deet 3
20 deet 3
18 deet 3
19 deet 3
14 sss 3
14 sss 3
14 sss 3
12 sss 3

Design issues

What are the factors in this experiment? Their levels? What is the response
variable? What is the treatment structure in this experiment?

There are two factors - the product used and the location where the subjects
were ‘subjected’ to mosquito bites. As in the previous example, the level of
interest in the two factors is quite different. The product is clearly a fixed effect
- we are interested in these specific levels. The location effect is a random effect
- these levels are chosen, in some sense, from all possible sites in Winnipeg, and
we would like to make inferences to all the possible locations in Winnipeg.

What is the experimental unit structure? What are the experimental and
observation units?

In this case, the experimental unit is a person and the observational unit is
a person.
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What is the randomization structure?

Here there are 24 separate people that could be randomized completely to
the locations and products.

Hence, this experiment appears to satisfy the requirements for a two-factor
CRD, albeit with one factor fixed and the other factor random.

In general, factors like ‘location’, or ‘site’ are usually random effects. How-
ever, in many cases, the designs are not really CRD’s as in this example. Here,
the experimental units could be randomly assigned to the locations. This is
not always true and it is very easy to fall into a common trap. Consider an
experiment where locations along the the west coast of Vancouver Island are to
be surveyed, and at each location, 4 patches of beach are found, covered with
oil to simulate an oil spill, and then two different clean up methods applied.
On the surface, this looks very similar to the previous experiment - locations,
multiple patches of beach at each location (which is like multiple subjects), and
two different treatments applied. Yet, you COULD NOT RANDOMIZE
patches of beach to locations - they are permanently affixed to each location.
This latter example is NOT a CRD! It is a relative of a blocked design where lo-
cations are blocks, and experimental units within blocks are randomly assigned
to the treatment combinations (in this case each treatment would appear twice
in each block).

I can’t emphasize too strongly that you must be very careful when dealing
with ‘location’ or ‘time’ as a factor - in many cases the design is NOT a CRD.

Preliminary summary statistics

We will create a ‘pseudo-factor’ in JMP so that we can get the statistics on each
group and make a simple plot.
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The SSS appears to work at least (or perhaps even better) than the DEET
formulations.

The standard deviations appear to be roughly equal in all groups.

The design is balanced (the sample sizes are equal in all groups).

The profile plot is below:
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The lines appears to be parallel, so we won’t be too surprised if we don’t
detect any interaction.

The statistical model

The statistical model for this study will contain terms corresponding to the main
effects and interactions of the factors (some of which will be random effects).
Because there is only size of experimental unit and because randomization was
complete, no terms will be explicitly given and these contributions are implicit.
The model is:

score = product location(R) product ∗ location(R)

Because we believe that one of the factor is a random effect we add a further two
assumptions to the model. For each random effect and any interaction involving
a random effect, we assume that these are normally distributed with mean 0
and an associated variance component.

So in this model, there are three sources of variation - residual error (corre-
sponding to the experimental units of people), the locations, and the interaction
between the locations and the products.

Fitting the model

We use the Analyze->Fit Model platform of JMP and specify the effects as we
did in past examples. DON’T FORGET TO SPECIFY THE RANDOM
EFFECTS! using the Effect Attributes pop-up menu, and don’t forget to
specify that both the location and the location by product interaction terms are
random effects.
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Hypothesis testing and estimation

The overall ANOVA table is below:

As before, this simply tells us that either products or locations or both has
a statistically significant effect upon the mean score.

The individual effect tests must be examined:

CAUTION- some packages will give you results that are WRONG!

We start the hypothesis testing with the most complicated terms and work
towards simpler terms. Again note that many of the tests are not of particular
interest.

We start with the interaction effects.

Our null hypothesis is
H: no interaction among the effects of product and these particular locations
upon the mean score
A: some interaction among the effects of product and these particular locations
upon the mean score.

Our test statistic is F=.747, the p-value (.48) is not very small. Hence there
is no evidence of an interaction among the effects of product and these particular
locations on the mean score.
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Examining main effects - locations

We find the F -statistic to be 6.85 with a p-value of 0.13 Now because this
is a random effect, we are saying that there is no evidence of a difference in
the mean score among these particular locations in Winnipeg. Note that if we
wish to generalize to all locations in Winnipeg, we would look at the variance
components which is beyond the scope of this course.

Examining main effects - product

The ANOVA table gives F=43.3 and the p-value 0.0223 - strong evidence of
a difference in the mean score between the two products. We also estimate the
marginal means, the estimated difference between the mean, and the se of the
difference.
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MANY PACKAGES may give incorrect se.

Analysis using SAS

Here is a link to a sample SAS program16 and output17. You should find that
most of what we found above also appears somewhere in the SAS output. Note
that GLM should not be used when there are random and mixed effects.

9.3.3 Power and sample size

CAUTION - computing power and sample size when there is more
than one random term in a model (i.e. a mixed model) is difficult.
You CANNOT use the fixed effect tables directly even for the fixed effects in
the model, and the power tables for the random effects are completely different.
You will need to seek some professional help in these cases.

JMP v4.0 sample size/power determinations are for models with fixed effects
ONLY and are not appropriate.

9.3.4 All effects random

It is possible to consider models where all effects are random.

The analysis proceeds in a similar fashion, i.e., you need to specify that all
effects are random, then have the computer compute the test statistics. Many
packages botch these computations.

However, such studies are very rare in ecology and we won’t cover them in
this course.

9.3.5 Unbalanced data with random effects

THESE ARE VERY DIFFICULT STUDIES TO
ANALYZE PROPERLY

16../MyPrograms/mosquito.sas
17../MyPrograms/mosquito.lst
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If you have such a study, seek very good help - even seasoned statisticians
who do not have experience with these types of studies will get them wrong.

Even worse, most computer packages are hopeless with these types of studies
- only recently has PROC MIXED and JMP from SAS been developed to analyze
unbalanced data sets reasonably well.

9.3.6 Scheffe vs. Searle formulations

It turns out that there are two alternate formulations for a model that involves
fixed and random effects. These are generically known as the Scheffe and Searle
formulations and are a source of controversy among statisticians even today.
Unfortunately, these two formulations compute the test statistics in slightly dif-
ferent ways leading to potentially different test-statistics which is, to say the
least, annoying. BE VERY, VERY, VERY CAREFUL
with mixed effect models! These are hard things to fit even for seasoned statis-
ticians.

An introduction to the problems encountered with mixed models is found
in Schwarz, C.J. (1993). The Mixed-Model ANOVA: The Truth, the Computer
Packages, and the Books. Part I: Balanced Data. The American Statistician,
47, 48-59.

9.4 Blocking in two-factor CRD designs

This twist on the design poses no real problems. Things to look out for:

• the randomization within each block is done independently of every other
block

• the blocks must be complete, i.e., every treatment combination must ap-
pear in every block.

• when analyzing the data, specify factors as fixed or random as well as
blocks as fixed or random.

• as before, random blocks or random factors imply that some packages may
give you incorrect results.

• random blocks or random factors imply that some of the packages will have
difficult in estimating the se of the marginal means and of the contrasts
among the means.

c©2003 Carl James Schwarz 71



9.5. FAQ

An example of such a design will be done in an assignment.

9.5 FAQ

9.5.1 How to determine sample size in 2 factor designs

How are sample sizes determined in 2 factor experiments?

In a later chapter, you will analyze in detail an experiment to Investigate
ways of warming people suffering from hypothermia.

Suppose that literature reviews have shown that in past experiments, the
standard deviation in the time needed to rewarm bodies was around 10 minutes.
We are interested in detecting differences of about 10 minutes in the mean time
needed to rewarm bodies among the three methods and between the two genders.
What sample sizes would be needed for a CRD.

First, compute the sample size required for each of the two factors.

When examining gender effects, we find that the standard deviation is about
10, the difference to detect is about 10, and a total sample size of about 34 is
required for an 80% power at α = 0.05.

When examining method effects, we find that again the standard deviation
is about 10, the difference between the smallest and largest mean is set to 10
while the third mean is placed in the middle, and a total sample size of about
60 is needed for an 80% power at α = 0.05.

The two results must be reconciled. If you must obtain the desired power for
both factors, then you must use the larger sample size, i.e., about 10 subjects
per treatment combination.

If this is too costly, you will have to make compromises. For example, you
could choose a sample size of 50 which would give you the desired power for
detecting gender effects, but not method effects.

c©2003 Carl James Schwarz 72



CHAPTER 9. TWO FACTOR DESIGNS - SINGLE-SIZED
EXPERIMENTAL UNITS - CR AND RCB DESIGNS

9.5.2 What is the difference between a ‘block’ and a ‘fac-
tor’?

Blocks are typically not manipulated but rather are a collection of experimental
units that are similar. You usually assume that blocking effects don’t interact
with factor effects. Usually, blocks are not assigned to experimental units - the
experimental units are conveniently grouped into blocks. Blocks are "passive".

A factor has levels that are manipulated and randomized over the experi-
mental units. Factors are usually assigned to experimental units. [Of course
in analytical surveys, units are randomly selected from each level rather than
being assigned to levels.] There is usually no natural grouping of experimental
units to factor levels. Factors are "active".

In the case of the rancid fat, laboratories were assigned at random to irradiate
the experimental units - the batches of fat. There is no natural grouping of
batches of fat with the laboratories. Consequently, laboratories were treated as
a factor rather than a block.

In the case of the mosquito repellent, people were randomly assigned to
locations. There were no natural groups of people at each location. Location
was again treated as a factor rather than a block.

In the case of seedling growth, the blocks were locations around the province.
At each location, there were several 1 ha plots. The plots were grouped naturally
by location. Hence, location should be treated as a block rather than as a factor.

In some cases, the distinction is not as clear cut. The computer packages
will give the same results if a term is factor or a block so the final results will be
the same. The only real reason to distinguish carefully among blocks or factors
is for interpreting the results. Usually, blocks are not randomized so tests for
"block" effects don’t make much sense.

9.5.3 If there is evidence of an interaction, does the anal-
ysis stop there?

In the case of an interaction being detected, first examine if a transformation
would remove the interaction. For example, if the factor operates multiplica-
tively (it reduces yield by 1/2) rather than additively (it reduced yield by 50
kg/ha) a log-transform would remove interaction effects.

If evidence of interaction is still present, then it really doesn’t make much
sense to test main effects. An interaction between two factors indicates that the

c©2003 Carl James Schwarz 73



9.5. FAQ

effect of a factor changes depending on the level of the other factor. The test for
the main effect in the presence of an interaction would examine if the average
effect exists - this may not bear any relevance to the individual effects.

At this point, you should examine the individual treatment combinations to
see which treatments appear to differ from other treatments.
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